# T-Stitch: Accelerating Sampling in Pre-Trained Diffusion **Models with Trajectory Stitching**

Zizheng Pan <sup>1</sup>, Bohan Zhuang <sup>1</sup>, De-An Huang <sup>2</sup>, Weili Nie <sup>2</sup>, Zhiding Yu <sup>2</sup> Chaowei Xiao <sup>2 3</sup>, Jianfei Cai <sup>1</sup>, Anima Anandkumar <sup>4</sup>









# 1. Background - Generative Models









Text-to-Image



Stable Diffusion 3 [1]

Text-to-Video



Sora [2]

<sup>[1]</sup> https://stability.ai/news/stable-diffusion-3

# 1. Background - Diffusion Transformer

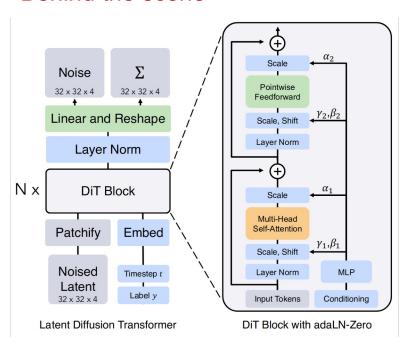


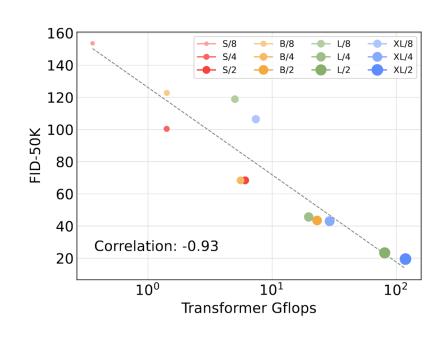






#### Behind the scene





Diffusion Transformer (DiT)

Larger model, better quality

# 1. Background - Diffusion Transformer









However, large model comes with high computational cost.

#### The speed-quality trade-off

| Name   | Params | FID-50K | Time Cost |  |  |
|--------|--------|---------|-----------|--|--|
| DiT-XL | 675M   | 2.27    | 43s       |  |  |
| DiT-S  | 33M    | 21.47   | 4s        |  |  |

• Sampling Steps: 250

• Images: 8

• **GPU**: RTX 3090



DiT-S



DiT-XL

## 2. Related Works









### How existing works accelerate image diffusion models?

### 1. Reducing costs per step

Model quantization.

E.g. Q-diffusion [1]

Network pruning.

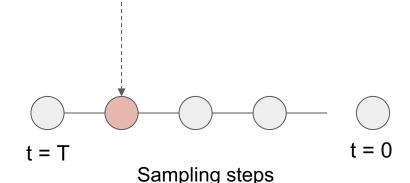
E.g., Structured pruning. [2]

Lightweight architecture design.

E.g., SnapFusion [3]

Cache-based method.

E.g. DeepCache [4]



<sup>[1]</sup> Li, Xiuyu, et al. "Q-diffusion: Quantizing diffusion models." ICCV (2023).

<sup>[2]</sup> Fang, Gongfan, Xinyin Ma, and Xinchao Wang. "Structural pruning for diffusion models." NeurIPS (2024).

<sup>[3]</sup> Li, Yanyu, et al. "Snapfusion: Text-to-image diffusion model on mobile devices within two seconds." NeurIPS (2024).

<sup>[4]</sup> Ma, Xinyin, Gongfan Fang, and Xinchao Wang. "Deepcache: Accelerating diffusion models for free." CVPR (2024).

## 2. Related Works





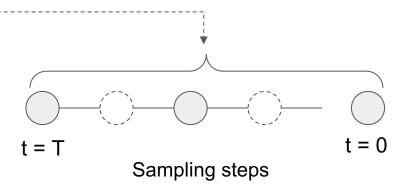




How existing works accelerate image diffusion models?

## 2. Reducing total sampling steps

- Advanced samplers.
  E.g., DPM-Solver [1].
- Distilling into fewer steps.
  E.g., Progressive step distillation [2].



## 3. Method - Our Motivation



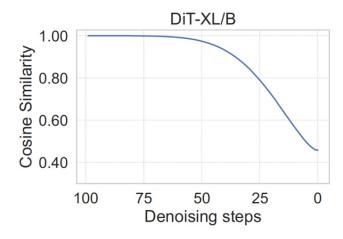






- 1. Generative models trained on the same data distribution share a common latent space.
- 2. Small models can generate highly similar latents at early steps as the large model!





Similarity comparison of latent embeddings at different denoising steps between different DiT models.

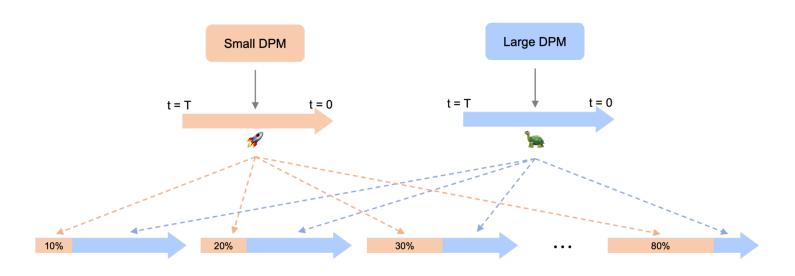
## 3. Method - Our Approach











The Proposed Trajectory Stitching (T-Stitch)

Core idea: Applying DPMs of different sizes at different denoising steps instead of using the same model at all steps, as in previous works.

## 4. Experiments - Quick Overview









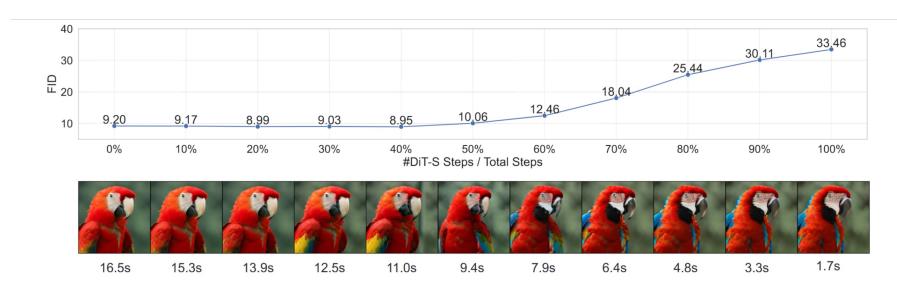


Figure 1. **Top:** FID comparison on class-conditional ImageNet when progressively stitching more DiT-S steps at the beginning and fewer DiT-XL steps in the end, based on DDIM 100 timesteps and a classifier-free guidance scale of 1.5. FID is calculated by sampling 5000 images. **Bottom:** One example of stitching more DiT-S steps to achieve faster sampling, where the time cost is measured by generating 8 images on one RTX 3090 in seconds (s).

## 4. Experiments



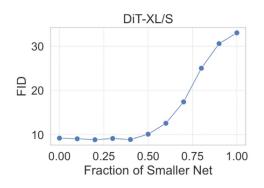


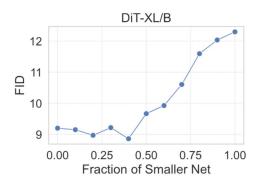


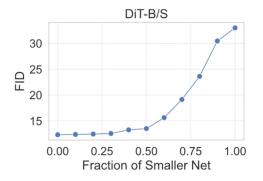


#### T-Stitch is compatible with DiTs and U-Nets.

#### DiTs on ImageNet-256







#### U-Net on ImageNet-256

*Table 1.* T-Stitch with LDM (Rombach et al., 2022) and LDM-S on class-conditional ImageNet. All evaluations are based on DDIM and 100 timesteps. We adopt a classifier-free guidance scale of 3.0. The time cost is measured by generating 8 images on one RTX 3090.

| Fraction of LDM-S | 0%     | 10%    | 20%    | 30%    | 40%    | 50%    | 60%    | 70%    | 80%   | 90%   | 100%  |
|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|
| FID               | 20.11  | 19.54  | 18.74  | 18.64  | 18.60  | 19.33  | 21.81  | 26.03  | 30.41 | 35.24 | 40.92 |
| Inception Score   | 199.24 | 201.87 | 202.81 | 204.01 | 193.62 | 175.62 | 140.69 | 110.81 | 90.24 | 70.91 | 54.41 |
| Time Cost (s)     | 7.1    | 6.7    | 6.2    | 5.8    | 5.3    | 4.9    | 4.5    | 4.1    | 3.6   | 3.1   | 2.9   |

## 4. Experiments









T-Stitch is complementary to reducing sampling steps and advanced samplers.

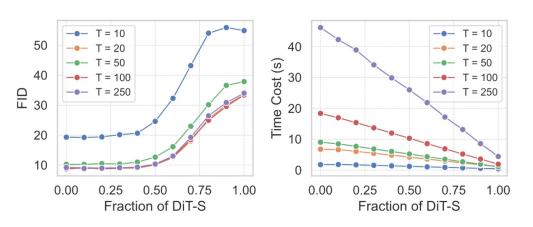
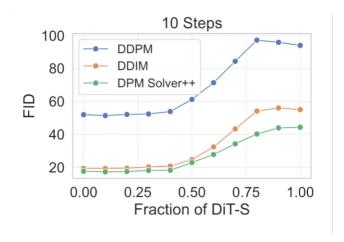


Figure 9. Left: We compare FID between different numbers of steps. Right: We visualize the time cost of generating 8 images under different number of steps, based on DDIM and a classifier-guidance scale of 1.5. "T" denotes the number of sampling steps.



T-Stitch with different sampler

# Thanks!



Paper



Code released! 🛠