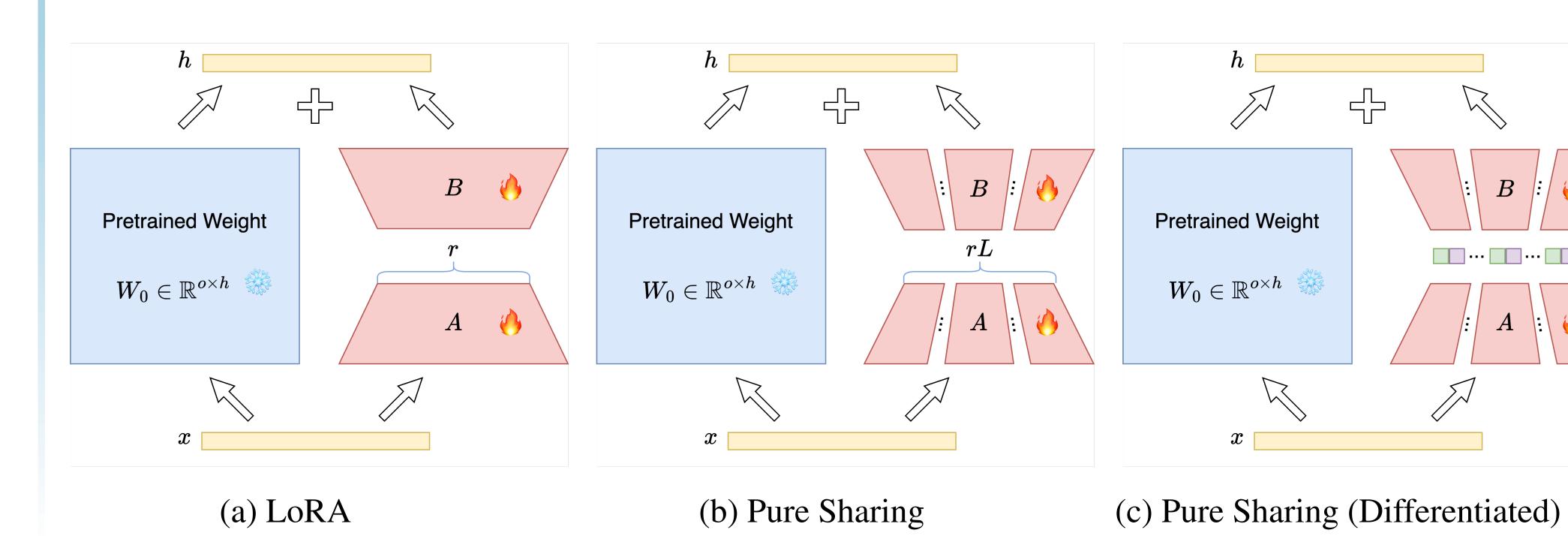


MoS: Unleashing Parameter Efficiency of Low-Rank Adaptation with Mixture of Shards

ICLR

Sheng Wang*, Liheng Chen*, Pengan Chen, Jingwei Dong, Boyang Xue, Jiyue Jiang, Lingpeng Kong, Chuan Wu

Motivation



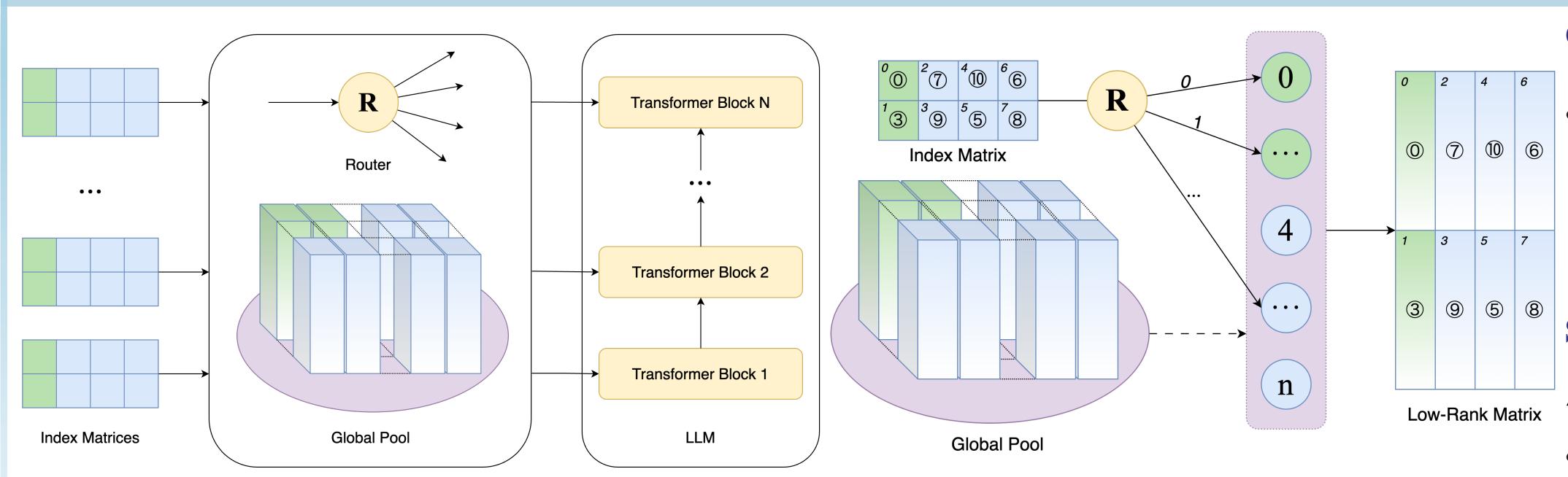
Sharing & Differentiation

- Pure parameter sharing does not necessarily boost up the parameter efficiency of LoRA.
- Differentiation reverses the detrimental effects of pure sharing mechanism.

Key Contribution

• Guided by the above high-level sharing insights, we introduce a more (8×) parameter-efficient finetuning method named Mixture of Shards (MoS), which incorporates both inter-layer and intra-layer sharing schemes, facilitating the concurrent serving of numerous customized models with saliently reduced GPU memory overhead.

Method



(b) Intra-Layer Sharing

Global Sharing < Sharing

$$\Delta \mathbf{W} = \mathbf{B} \mathbf{A} = \mathbf{B}^p \mathbf{A}^p$$

• A globally shared pool for each linear layer type consists of multiple independently initialized and trained vector pairs, while all vector pairs within the low-rank matrix pairs (*i.e.*, **A** and **B**) for each layer are sampled from the pool.

Subset Selection < **Differentiation**

$$\Delta \mathbf{W}^k = \mathbf{B}^k \mathbf{A}^k = \mathbf{B}^p \Lambda^k \mathbf{A}^p = \sum_{i=1}^{eL} m_i^k \cdot \mathbf{b}_i^p \otimes \mathbf{a}_i^p$$

• Select a specific number of vector pairs from the shared matrices (*i.e.*, global pools).

Pair Dissociation & Vector Sharding \triangleleft Differentiation $\Delta \mathbf{W}^k = \mathbf{B}^k \mathbf{A}^k = \mathrm{Route}^c(\mathbf{B}^p, \mathbf{I}_b^k) \, \mathrm{Route}^r(\mathbf{A}^p, \mathbf{I}_a^k)$

(a) Inter-Layer Sharing

• Decouple vector pairs into two pools, crop each vector into smaller shards, and sample them separately.

Shard Privatization < **Differentiation**

 $\Delta \mathbf{W}^k = \mathbf{B}^k \mathbf{A}^k = \mathrm{Route}^c(\mathrm{Concat}(\mathbf{A}^{pub}, \mathbf{A}^{pri}), \mathbf{I}_b^k) \, \mathrm{Route}^r(\mathrm{Concat}(\mathbf{B}^{pub}, \mathbf{B}^{pri}), \mathbf{I}_a^k)$

Partition each global pool into two segments: a public segment that remains shared, and a private segment exclusively accessible to one matrix.

Experiments

Motivation

Method	Rank	# Param.	MMLU	BBH	GSM8K	TyDi QA		HumanEval	Avg.
			EM	EM	EM	F1	EM	P@1	11,8,
LoRA	2	5.00M	44.77	36.22	26.28	48.67	35.70	18.24	34.98
Pure Sharing	64	5.00M	43.61	35.15	26.54	49.12	36.04	15.53	34.33
+ Random Scaling	64	5.00M	43.98	35.30	29.04	49.03	35.73	15.58	34.77
+ Subset Selection	64	5.00M	45.56	36.76	28.18	50.33	37.22	18.64	36.12

Table 1: Results of LLaMA2-7B with different sharing and differentiation methods across diverse instruction following datasets. "+ Random Scaling" and "+ Subset Selection" denote the individual integration of them into the "Pure Sharing" scheme.

Main results

Method	Rank	# Param.	MMLU (factuality)	BBH (reasoning)	GSM8K (reasoning)	TyDi QA (multilinguality)		HumanEval (coding)	_ Avg.
			EM (0-shot)	EM (3-shot)	EM (8-shot, CoT)	F1 (1-sho	EM ot, GP)	P@1 (0-shot)	· & •
Vanilla (chat) [†]	_	_	41.18	0.00	3.03	17.40	0.10	0.64	10.39
Vanilla (no-chat) [†]	-	-	41.53	33.43	15.47	49.18	35.35	13.57	31.42
LoRA	2^{\dagger}	5.00M	44.77	36.22	26.28	48.67	35.70	18.24	34.98
	8^{\dagger}	19.99M	46.55	36.92	31.11	50.50	36.89	19.37	36.89
	16^{\dagger}	39.98M	46.70	36.43	31.34	50.97	37.64	18.73	36.97
	64	159.91M	47.10	37.78	31.43	51.65	38.07	19.12	37.53
VeRA [†]	256	1.42M	42.51	35.10	22.69	48.39	36.38	18.90	34.00
Tied LoRA [†]	280	4.99M	44.36	35.76	25.47	50.16	37.15	18.68	35.26
PRoLoRA [†]	4/8	5.00M	45.85*	36.45*	27.57	49.94*	36.59*	19.75*	36.03
MoS	4/8	5.00M	46.09	37.29	28.43	50.21*	37.19*	19.12	36.39
	16/32	19.99M	47.01*	37.79	30.93	51.71	38.34	20.00*	37.63
MoS ^{-sp}	16/32	19.99M	46.64*	36.69	30.17	50.27	36.90	18.60*	36.54
MoS ^{-vs}	16/32	19.99M	46.47^{*}	37.52	31.77	50.90	37.98	18.69*	37.22
MoS ^{-pd}	16/32	19.99M	46.23^{*}	36.17	30.71	51.40	37.94	16.77^*	36.54

Table 2: Results of LLaMA2-7B across multiple instruction-following datasets using different methods. The symbols "-sp", "-vs", and "-pd" indicate the ablation of shard privatization, vector sharding, and pair dissociation. "*" denotes the optional higher ranks. Underlined values indicate the best performance with 5.00M trainable parameters, while bold values denote the best results across all configurations.

Hyperparameter Robustness.

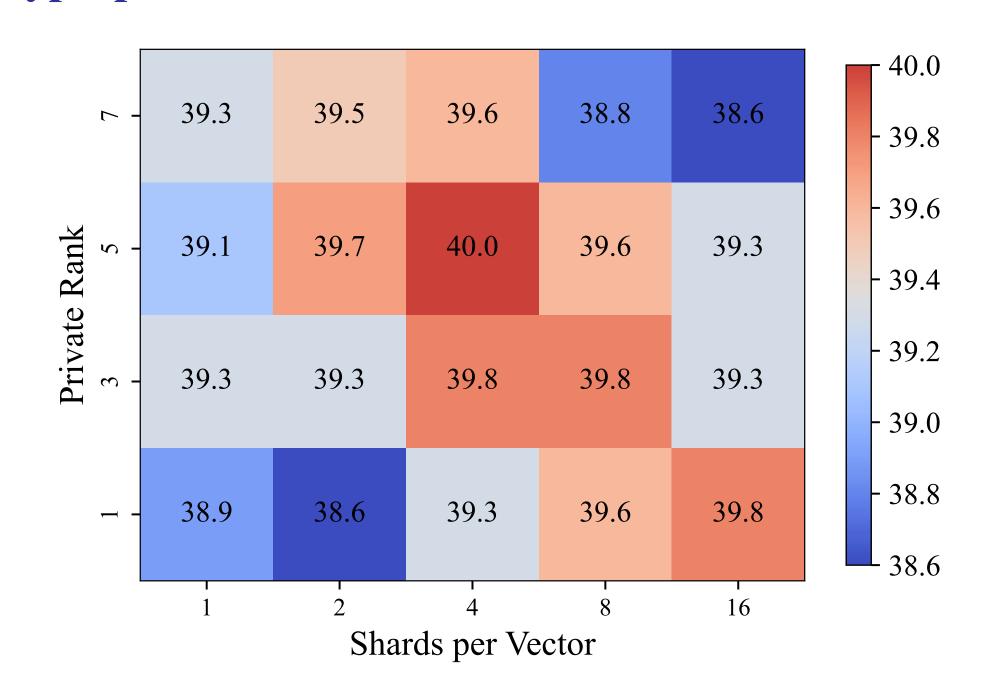


Figure 1: Performance of MoS with the rank of 8 with respect to private ranks and shards per vector given a specific parameter budget on the LLaMA3.2-3B model and BBH benchmark.

- Specific Parameter Budget. MoS achieves higher parameter efficiency than LoRA, while keeping better practical feasibility than other baselines in a capacity constrained scenario (*i.e.*, 5M parameter budget).
- Specific Performance Target. MoS achieves 4/6 performance targets and an average improvement from 36.97 to 37.63, with 1/8 of trainable parameters, indicating seven times more tasks/users concurrently.
- Hyperparameter Robustness. For any given private rank, there always exists a suitable range of shard numbers that consistently produce remarkable results $(i.e., \geq 39.8\%)$.
- Ablation Study. The ablation studies on pair dissociation, vector sharding, and shard privatization (*i.e.*, MoS^{-pd}, MoS^{-vs}, and MoS^{-sp}) demonstrate consistently inferior performance, highlighting the significant, nearly cost-free improvements brought by these schemes, respectively.