



# CO-MOT: Enhancing End-to-End Multi-Object Tracking with Cooperative Label Assignment and Shadow Concept

ICLR 2025

Feng Yan, Weixin Luo, Yujie Zhong, Yiyang Gan, Lin Ma March, 2025

Project: https://github.com/BingfengYan/CO-MOT



# Introduction

# Background:

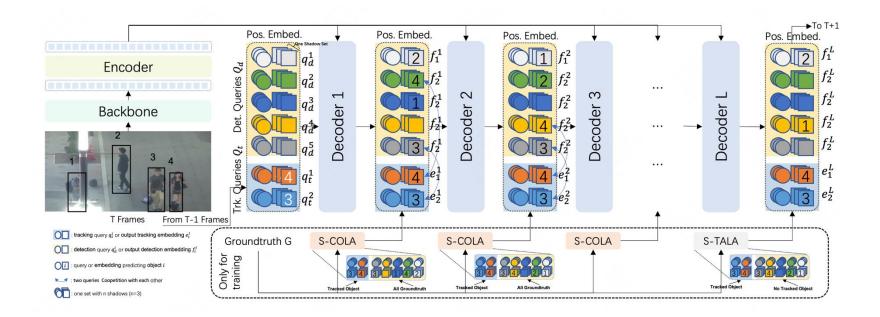
- Traditional MOT tackles tasks separately, achieving optimal solutions for each but lacking global optimization.
- End-to-end MOT models eliminate pre- and post-processing steps but have not yet surpassed traditional methods.

## Problem:

• Label assignment strategy results in scarce positive samples for detection queries, affecting detection capability.



# **Method Overview**



Components: CNN backbone, deformable encoder, deformable decoder.

Key Components: Role of COLA and Shadow Set in the framework.



# **Detailed Methodology**

## COLA Strategy:

 Allows tracked objects to be reassigned to detection queries in intermediate decoders, fostering collaboration and enhancing the representation through self-attention between similar identities.

## Shadow Queries:

 Each query is augmented with shadows that act as counterparts, enabling robust handling of crowded scenes and easing one-to-set optimization.



# **Experimental Results**

Table 2: Comparison to existing methods on the DanceTrack test set. "\*" and "+" respectively represent the use of DAB-Deformable backbone and joint training with CrowdHuman. For static images in CrowdHuman dataset, we apply random shifts as in CenterTrack to generate video vlips with pseudo tracks.

|                                        | Source      | HOTA   | DetA    | AssA | MOTA | IDF  |
|----------------------------------------|-------------|--------|---------|------|------|------|
|                                        | Non-End-to- |        |         |      |      |      |
| CenterTrack (Zhou et al., 2020)        | ECCV'20     | 41.8   | 78.1    | 22.6 | 86.8 | 35.7 |
| TransTrack (Sun et al., 2020)          | arXiv'20    | 45.5   | 75.9    | 27.5 | 88.4 | 45.2 |
| FairMOT (Zhang et al., 2021)           | IJCV'21     | 39.7   | 66.7    | 23.8 | 82.2 | 40.8 |
| QDTrack (Fischer et al., 2022)         | CVPR'21     | 54.2   | 80.1    | 36.8 | 87.7 | 50.4 |
| TraDeS (Wu et al., 2021)               | CVPR'21     | 43.3   | 74.5    | 25.4 | 86.2 | 41.2 |
| ByteTrack (Zhang et al., 2022b)        | ECCV'22     | 47.7   | 71.0    | 32.1 | 89.6 | 53.9 |
| GTR (Zhou et al., 2022)                | CVPR'22     | 48.0   | 72.5    | 31.9 | 84.7 | 50   |
| MT-IoT <sup>+</sup> (Yan et al., 2022) | arXiv'22    | 66.7   | 84.1    | 53.0 | 94.0 | 70.  |
| OC-SORT (Cao et al., 2023)             | CVPR'23     | 55.1   | 80.3    | 38.3 | 92.0 | 54.  |
| C-BIoU (Yang et al., 2023)             | WACV'23     | 60.6   | 81.3    | 45.4 | 91.6 | 61.  |
| MOTRv2+ (Zhang et al., 2023)           | CVPR'23     | 69.9   | 83.0    | 59.0 | 91.9 | 71.  |
| FineTrack (Ren et al., 2023)           | CVPR'23     | 52.7   | 72.4    | 38.5 | 89.9 | 59.  |
| GHOST (Seidenschwarz et al., 2023)     | CVPR'23     | 56.7   | 81.1    | 39.8 | 91.3 | 57.  |
| Walker (Segu et al., 2024)             | ECCV'24     | 52.4   | 36.1    | 76.5 | 89.7 | 55.  |
| GeneralTrack (Qin et al., 2024)        | CVPR'24     | 59.2   | 82.0    | 42.8 | 91.8 | 59.  |
| MotionTrack (Xiao et al., 2024b)       | arXiv'24    | 58.2   | 81.4    | 41.7 | 91.3 | 58.  |
| ConfTrack (Jung et al., 2024)          | WACV'24     | 56.1   | -       | -    | 89.6 | 56.  |
| MambaTrack (Xiao et al., 2024a)        | arXiv'24    | 56.8   | 80.1    | 39.8 | 90.1 | 57.  |
| Hybrid-SORT (Yang et al., 2024)        | AAAI'24     | 62.2   | -       | -    | 91.6 | 63.  |
| UCMCTrack (Yi et al., 2024)            | AAAI'24     | 63.6   | -       | 51.3 | 88.8 | 65.  |
| DiffusionTrack (Luo et al., 2024)      | AAAI'24     | 52.4   | 82.2    | 33.5 | 89.3 | 47.  |
|                                        | End-to-en   | d      |         | 186  |      |      |
| MOTR (Zeng et al., 2022)               | ECCV'22     | 54.2   | 73.5    | 40.2 | 79.7 | 51.  |
| DNMOT (Fu et al., 2023)                | arXiv'23    | 53.5   | , O., - | -    | 89.1 | 49.  |
| MeMOTR (Gao & Wang, 2023)              | ICCV'23     | 63.4   | 77.0    | 52.3 | 85.4 | 65.  |
| MeMOTR* (Gao & Wang, 2023)             | ICCV'23     | 68.5   | 80.5    | 58.4 | 89.9 | 71.  |
| MOTRv3+ (Yu et al., 2023)              | arXiv'23    | 68.3   | · -     | -    | 91.7 | 70.  |
| SUSHI (Cetintas et al., 2023)          | CVPR'23     | 63.3   | 80.1    | 50.1 | 88.7 | 63.  |
| MambaTrack+ (Huang et al., 2024)       | arXiv'24    | 56.1   | 80.8    | 39.0 | 90.3 | 54.  |
| OuTR (Liu et al., 2024)                | arXiv'24    | 54.5   | -       | -    | 88.3 | 55.  |
| DiffMOT (Lv et al., 2024)              | CVPR'24     | 62.3   | 82.5    | 47.2 | 92.8 | 63.  |
| ByteSSM (Hu et al., 2024)              | arXiv'24    | 57.7   | 81.5    | 41.0 | 92.2 | 57.  |
| CO-MOT                                 |             | - 65.3 | 80.1    | 53.5 | 89.3 | 66.  |
| CO-MOT <sup>+</sup>                    | 62          | 69.4   | 82.1    | 58.9 | 91.2 | 71.  |

| (a) | MOT1 | 7 Tect | Dataset |
|-----|------|--------|---------|
|     |      |        |         |

|                | <b>HOTA</b> | AssA | MOTA | IDF1    |
|----------------|-------------|------|------|---------|
| No             | n-End-to    | -end |      | 1 1 1 X |
| CenterTrack    | 52.2        | 51.0 | 67.8 | 64.7    |
| TransTrack     | 54.1        | 47.9 | 74.5 | 63.9    |
| FairMOT        | 59.3        | 58.0 | 73.7 | 72.3    |
| QDTrack        | 63.5        | 64.5 | 77.5 | 78.7    |
| ByteTrack      | 63.1        | 62.0 | 80.3 | 77.3    |
| OC-SORT        | 63.2        | 63.2 | 78.0 | 77.5    |
| DiffusionTrack | 60.8        | 58.8 | 77.9 | 73.8    |
| MOTRv2         | 62.0        | 60.6 | 78.6 | 75.0    |
| I              | End-to-ei   | nd   |      | 30,00   |
| TrackFormer    | -           | -    | 65.0 | 63.9    |
| MOTR           | 57.8        | 55.7 | 73.4 | 68.6    |
| MeMOT          | 56.9        | 55.2 | 72.5 | 69.0    |
| MeMOTR         | 58.8        | 58.4 | 72.8 | 71.5    |
| DNMOT          | 58.0        | -    | 75.6 | 68.1    |
| CO-MOT         | 60.1        | 60.6 | 72.6 | 72.7    |
|                |             |      |      |         |

#### (b) BDD100K Validation Set

|                      | TETA    | LocA   | AssocA | CISA |
|----------------------|---------|--------|--------|------|
| N                    | on-End- | to-end |        |      |
| DeepSORT             | 48.0    | 46.4   | 46.7   | 51.0 |
| QDTrack              | 47.8    | 45.8   | 48.5   | 49.2 |
| TETer                | 50.8    | 47.2   | 52.9   | 52.4 |
| MOTRv2               | 54.9    | 49.5   | 51.9   | 63.1 |
| <i>-</i>             | End-to- | end    |        |      |
| MOTR                 | 50.7    | 35.8   | 51.0   | -    |
| CO-MOT               | 52.8    | 38.7   | 56.2   | 63.6 |
| (c                   | ) MOT20 | Test D | ataset |      |
|                      | НОТА    | AssA   | MOTA   | IDF  |
|                      | End-to- | -end   |        |      |
| MANOT                | ~       | O      | (2.7   | ((1  |
| MeMOT                | 54.1    | 55.0   | 63.7   | 66.1 |
| MeMO1<br>TrackFormer |         | 55.0   | 68.6   | 65.  |

57.5 65.7 60.1 70.5

#### •Datasets:

 Evaluated on DanceTrack, MOT17, BDD100K and MOT20.

### •Performance Comparison:

- Use tables to compare CO-MOT with other methods
- Highlight key metrics: HOTA, DetA, AssA, etc.



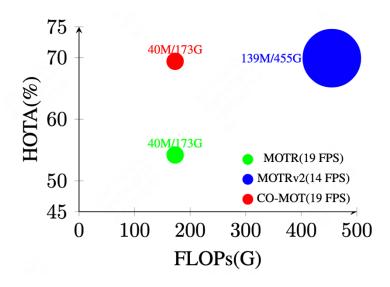
# **Efficiency Comparison**

## Resource Utilization:

 With only 173G FLOPs and 40M parameters, CO-MOT achieves 69.4% HOTA, comparable to MOTRv2's HOTA but without the extra computational overhead of a separate detector.

# • Inference Speed:

 CO-MOT demonstrates a 1.4× faster inference speed compared to MOTRv2, highlighting its deployment efficiency.





# **Challenges and Summary**

# Challenges:

- Dataset size impacts the model's performance, as seen in MOT17's smaller data volume leading to less robust results.
- Handling of small objects remains a challenge, affecting detection and tracking accuracy.

# • Summary:

- CO-MOT significantly improves the performance of end-to-end Transformer models in multi-object tracking.
- Acts as a plug-in solution to advance end-to-end MOT research.

# Question & Answer Thank You!