

PN-GAIL: Leveraging Non-optimal Information from Imperfect Demonstrations

Qiang Liu, Huiqiao Fu, Kaiqiang Tang, Daoyi Dong, Chunlin Chen

Motivation

Problem: Generative Adversarial Imitation Learning (GAIL) tends to **fail** when faced with data filled with **imperfect demonstrations**.

2IWIL Solution: 2IWIL reweights imitation learning based on **confidence**, and assigns **higher weights** to demonstrations with **higher confidence**, so as to prioritize learning of **high-quality demonstrations**.

Motivation

However, it is worth noting that this weighting behavior can be influenced by the **preferences inherent in** imperfect demonstrations.

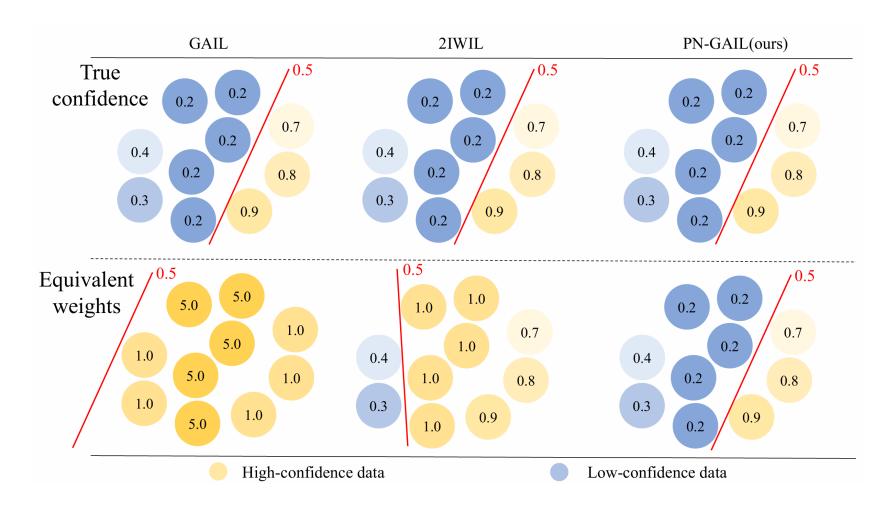
GAIL:
$$\min_{\theta} \max_{w} \mathbb{E}_{x \sim p_{\theta}} \left[\log D_w(x) \right] + \mathbb{E}_{x \sim p} \left[\log (1 - D_w(x)) \right]$$

2IWIL:
$$\min_{\theta} \max_{w} \mathbb{E}_{x \sim p_{\theta}} \left[\log D_{w}(x) \right] + \mathbb{E}_{x \sim p} \left[\frac{r(x)}{\eta} \log(1 - D_{w}(x)) \right]$$

Expand the second expectation, that is:

$$\sum \boldsymbol{p}(\boldsymbol{x})\log(1-D_w(\boldsymbol{x})), \quad \sum \boldsymbol{p}(\boldsymbol{x})\frac{r(\boldsymbol{x})}{\eta}\log(1-D_w(\boldsymbol{x}))$$

Motivation



According to Eq 3, the equivalent weight of x_1 will be **1.0** compared to others (0.2 \times 5 = 1.0). This means that the discriminator will consider x_1 to be more likely the optimal demonstration than others!

PN-GAIL leverages **non-optimal information** from imperfect demonstrations, allowing the discriminator to comprehensively assess the positive and negative risks associated with these demonstrations.

We begin by focusing on the training of the **discriminator**:

$$R_{D_w}^{pn}(\mathcal{D}_{\pi_\theta}, \mathcal{D}) = R_{D_w}^1(\mathcal{D}_{\pi_\theta}) + R_{D_w}^{pn}(\mathcal{D})$$

$$R_{D_w}^{pn}(\mathcal{D}) = R_{D_w}^{pn}(\mathcal{D}_{\text{opt}}, \mathcal{D}_{\text{non}}) = \eta R_{D_w}^0(\mathcal{D}_{\text{opt}}) + (1 - \eta) R_{D_w}^1(\mathcal{D}_{\text{non}})$$

The overall risk of the discriminator can be rewritten as:

$$R_{D_w}^{pn}(\mathcal{D}, \mathcal{D}_{\pi_\theta}) = R_{D_w}^1(\mathcal{D}_{\pi_\theta}) + \eta R_{D_w}^0(\mathcal{D}_{\text{opt}}) + (1 - \eta) R_{D_w}^1(\mathcal{D}_{\text{non}})$$

Replacing the loss function with the standard logistic loss and tidying up the statement, the objective of the discriminator becomes:

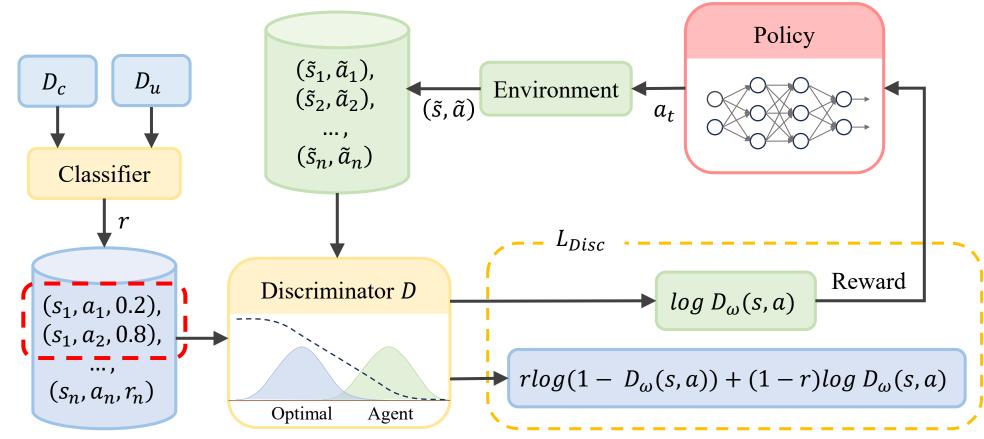
$$\min_{\theta} \max_{w} \mathbb{E}_{x \sim p_{\theta}} \left[\log D_w(x) \right] + \mathbb{E}_{x \sim p} \left[r(x) \log(1 - D_w(x)) \right] + \mathbb{E}_{x \sim p} \left[(1 - r(x)) \log D_w(x) \right]$$

To get **more accurate** confidence scores, we refine the semi-conf (SC) classification proposed in 2IWIL, which is trained by minimizing the following risk:

$$R_{SC,\ell}(g) = \mathbb{E}_{x,r \sim q} \left[r\ell(g(x)) + (1-r)\ell(-g(x)) - \beta\ell(-g(x)) \right] + \mathbb{E}_{x \sim p} [\beta\ell(-g(x))]$$

We propose balanced semi-conf (BSC) classification. We introduce $E_{x\sim p}[\alpha\ell(g(x)) - E_{x\sim q}[\alpha\ell(g(x))]$, the theoretical value of which is **0**. And the final risk is as follows:

$$R_{\text{BSC},\ell}(g) = \mathbb{E}_{x,r \sim q} \left[r\ell(g(x)) + (1-r)\ell(-g(x)) - \alpha\ell(g(x)) - \beta\ell(-g(x)) \right] + \mathbb{E}_{x \sim p} \left[\alpha\ell(g(x)) + \beta\ell(-g(x)) \right]$$



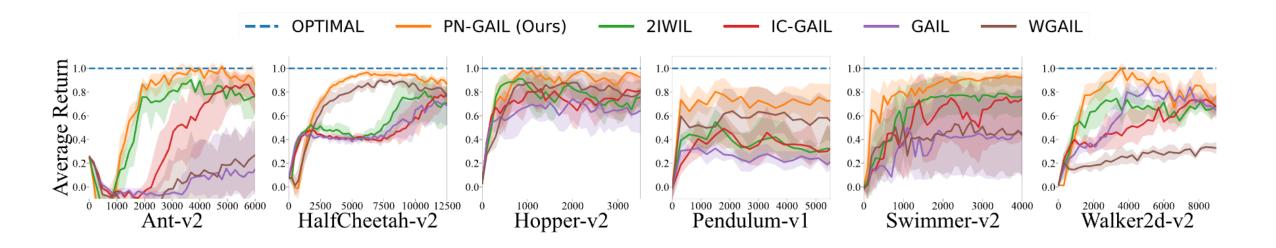
Imperfect demonstrations

We validate PN-GAIL by conducting experiments on six control tasks, including Pendulum-v1 and five challenging MuJoCo environments.

We aim to answer three questions:

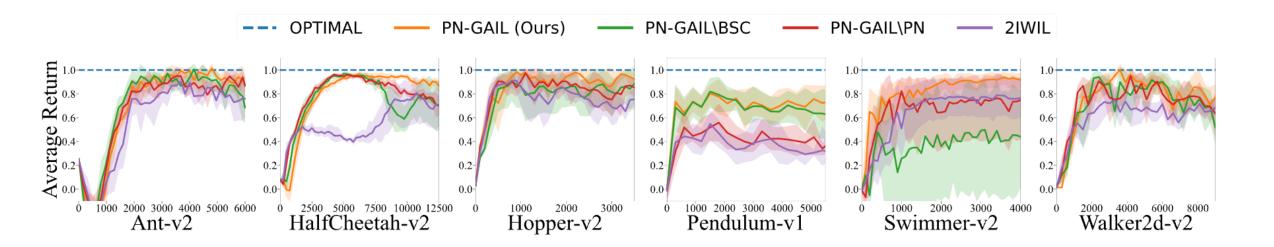
- Is 2IWIL influenced by the preferences **inherent in** imperfect demonstrations, and can our method **alleviate such influence**?
- Does our proposed BSC **outperform** the SC proposed in 2IWIL?
- How **robust** is our method?

Performance



The results of the experiments with other baseline methods have shown that PN-GAIL is **superior to** other methods when dealing with imperfect demonstrations.

Performance



The results of the ablation experiments have shown that both of the proposed improvements **contribute to** the final performance.

Accuracy of classifier

Table 1: Accuracy of classifier measured by MAE and RMSE.

Classifier	Metrics	Ant-v2	HalfCheetah-v2	Hopper-v2	Pendulum-v1	Swimmer-v2	Walker2d-v2
SC	MAE RMSE	0.213 ± 0.023 0.345 ± 0.033	0.184 ± 0.011 0.272 ± 0.009			0.362 ± 0.049 0.595 ± 0.040	
BSC	MAE RMSE	0.056 ± 0.011 0.212 ± 0.026	0.057 ± 0.012 0.175 ± 0.013			0.286 ± 0.179 0.472 ± 0.188	

The MAE and RMSE of the BSC classifier are **notably lower** than those of the SC classifier, indicating that the predictions of the BSC classifier are **closer to** the ground truth.

Robustness of PN-GAIL

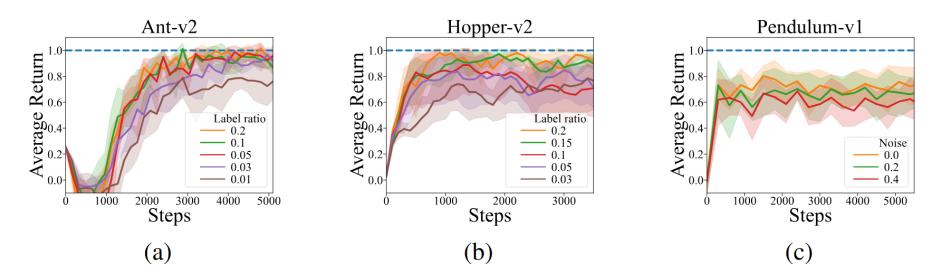


Figure 4: (a) Ant-v2 experiments with different label ratios. (b) Hopper-v2 experiments with different label ratios. (c) Pendulum-v1 experiments with different standard deviations of Gaussian noise.

As the label ratio decreases, PN-GAIL exhibits **only a marginal decline** in performance.

Even when confidence scores are subject to noise, PN-GAIL still demonstrates satisfactory performance, indicating its robustness to noisy confidence scores.

Thank You

Contact: qiangliu@smail.nju.edu.cn

Robotics & Reinforcement Learning Control