

Brain-inspired L_p -Convolution benefits large kernels and aligns better with visual cortex

<u>Jea Kwon</u>^{1*}, Sungjun Lim², Kyungwoo Song^{2†}, C. Justin Lee^{3†}

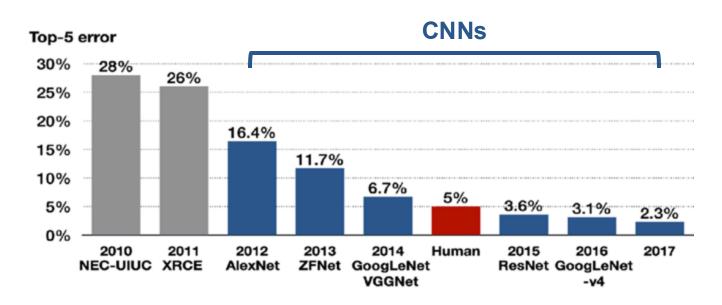
¹Max Planck Institute ²Yonsei University ³Institute for Basic Science

*: This work was conducted at the Institute for Basic Science.

†: Co-corresponding authors

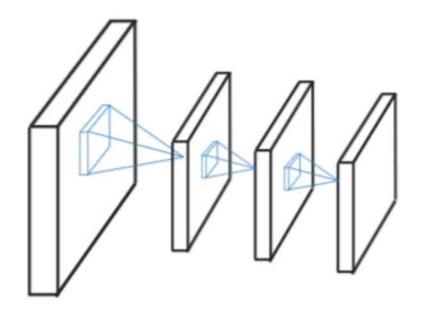
Convolutional Neural Networks (CNNs) revolutionized the machine vision

ImageNet Competition Winners



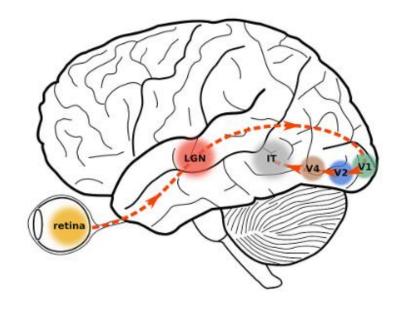
Kang et al. (2020)

What made CNN successful?



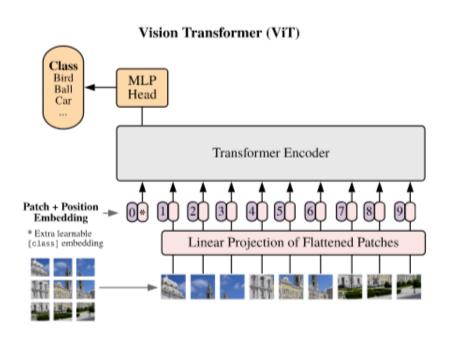
- 1. Hierarchical structures
- 2. Local connectivity
- 3. Parameter sharing

CNN benefits from the strong inductive bias by mirroring the brain's structure



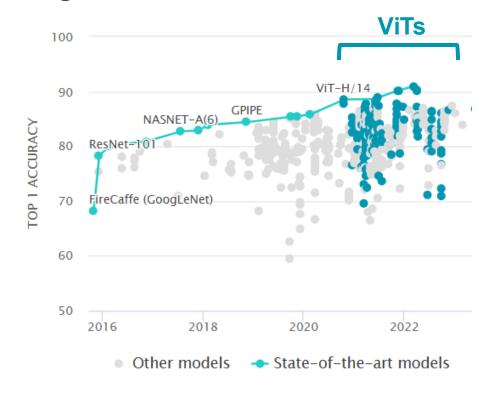
- Strong Inductive Bias
 Local connectivity Fukushima (1980)
 Parameter sharing LeCun et al. (1989)

Vision Transformers (ViTs) with *less inductive bias* outperforms CNNs



Dosovitskiy et al. (2020)

ImageNet-1k Benchmark

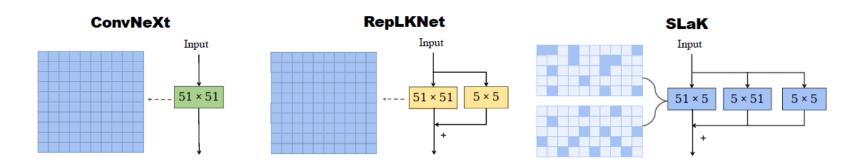


CNNs outperform ViTs on smaller datasets thanks to strong inductive bias

	CIFAR-10	CIFAR-100	SVHN
ViT	81.36	54.31	95.17
ResNet18	92.8	70.7	95.78

"Understanding Why ViT Trains Badly on Small Datasets: An Intuitive Perspective." Zhu et al. (2023)

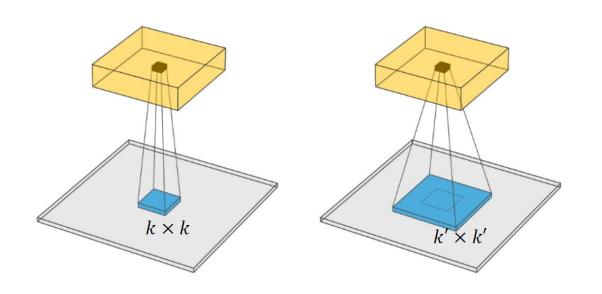
Recently, large kernel CNNs even show comparable performance to ViTs



Model	Image Size	#Param.	FLOPs	Top-1 Accuracy (%)
ViT-Base/16 [19]	224×224	87M	17.6G	77.9
DeiT-Base/16 [80]	224×224	87M	17.6G	81.8
RepLKNet-31B [17]	224×224	79M	15.3G	83.5
Swin-B [55]	224×224	88M	15.4G	83.5
ConvNeXt-B [56]	224×224	89M	15.4G	83.8
SLaK-B	224×224	95M	17.1G	84.0

Liu et al. *ICLR* (2023)

However, traditional CNNs do not benefit from simply increasing the kernel size. Why?



	CIFAR-100			
Kernel	AlexNet	VGG-16		
(Base)	66.05 ± 0.33	70.26 ± 0.29		
(Large)	*** 54.53 ± 0.65	**64.82 ± 2.92		

Parameter # increase, Performance decrease.

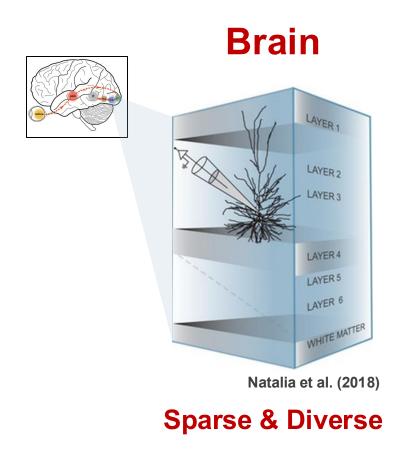
→ Large kernel problem

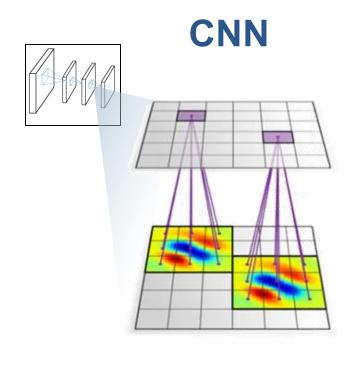
Introduction Summary

1. CNNs outperform ViTs in small datasets due to strong inductive biases originated from the brain

2. Modern CNNs show comparable performance with large kernels while traditional CNNs do not.

CNN is not exact replica of brain



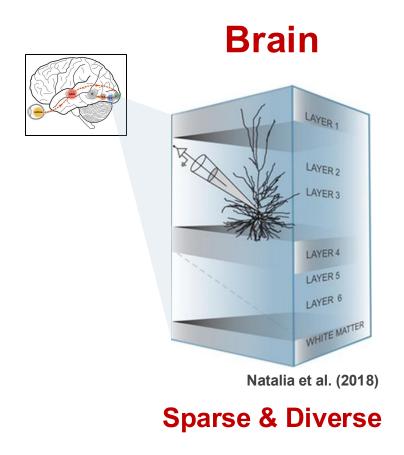


Dense & Uniform

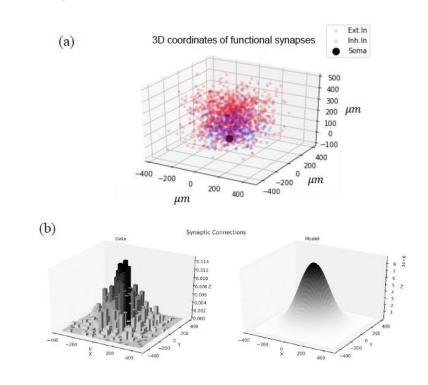
Different Connectivity Patterns

Image Source: https://maurice-weiler.gitlab.io/blog_post/cnn-book_2_conventional_cnns/

Brain's local connectivity follows Gaussian Sparsity

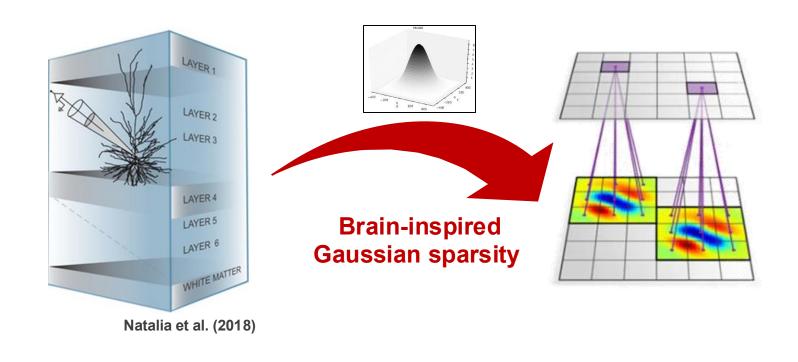


Functional synapse distribution analyzed data from Rossi et al. *Nature* (2020)

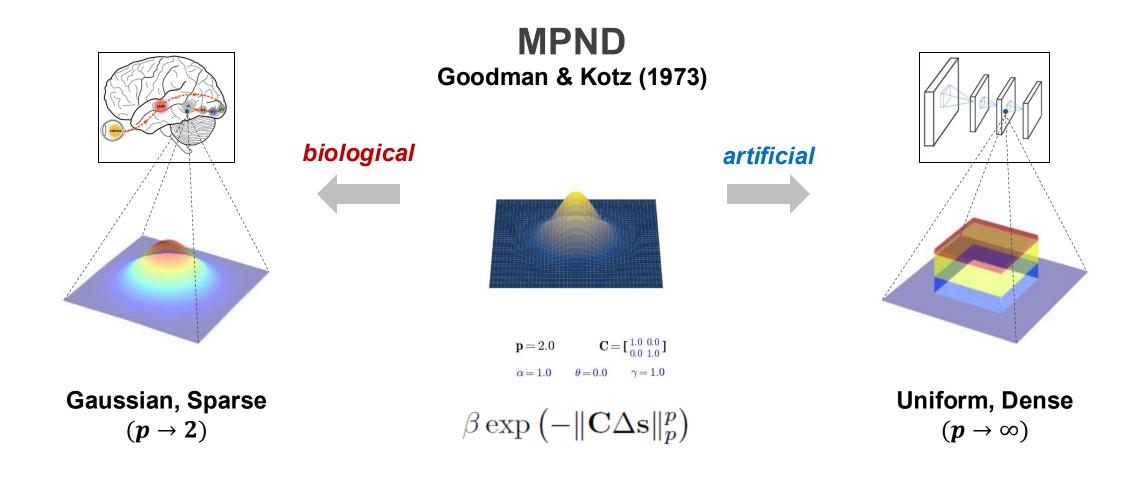


Gaussian sparsity as a new inductive bias?

RQ: Can brain-inspired Gaussian sparsity benefit large kernel CNN and aligns better with Brain?



Multivariate p-generalized Normal Distribution (MPND) to bridge *biological* and *artificial* local connectivity

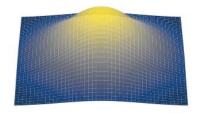


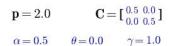
Conformational diversity of MPND with p and C

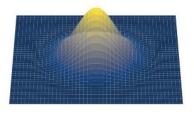
Diverse shape

MPND Goodman & Kotz (1973)

Diverse size



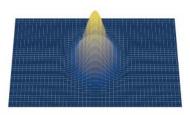




$$\mathbf{p} = 2.0 \qquad \mathbf{C} = \begin{bmatrix} 1.0 & 0.0 \\ 0.0 & 1.0 \end{bmatrix}$$

$$\alpha = 1.0 \qquad \theta = 0.0 \qquad \gamma = 1.0$$

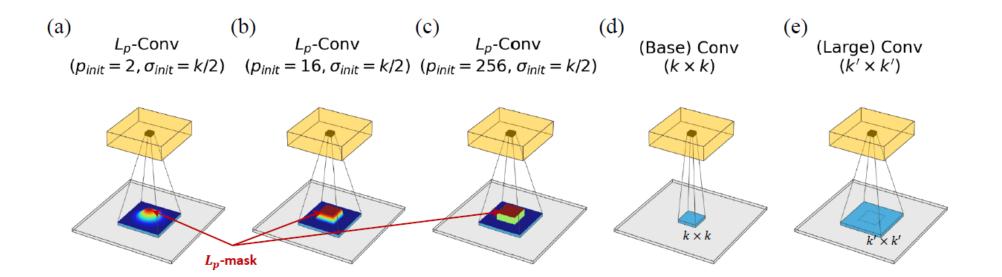
$$\beta \exp\left(-\|\mathbf{C}\Delta\mathbf{s}\|_p^p\right)$$

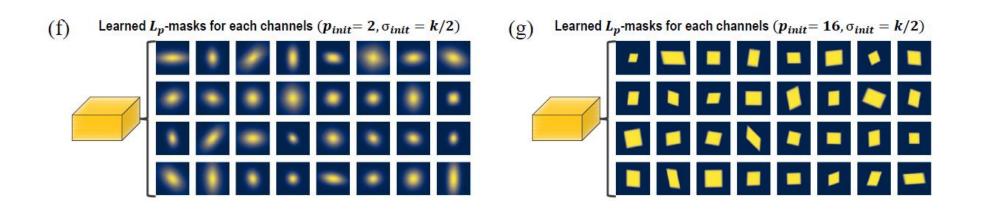


$$\mathbf{p} = 2.0 \qquad \mathbf{C} = \begin{bmatrix} 1.0 & 0.0 \\ 0.0 & 2.0 \end{bmatrix}$$

$$\alpha = 2.0 \qquad \theta = 90.0 \qquad \gamma = 2.0$$

L_p -Convolution: Introducing MPND in Convolution

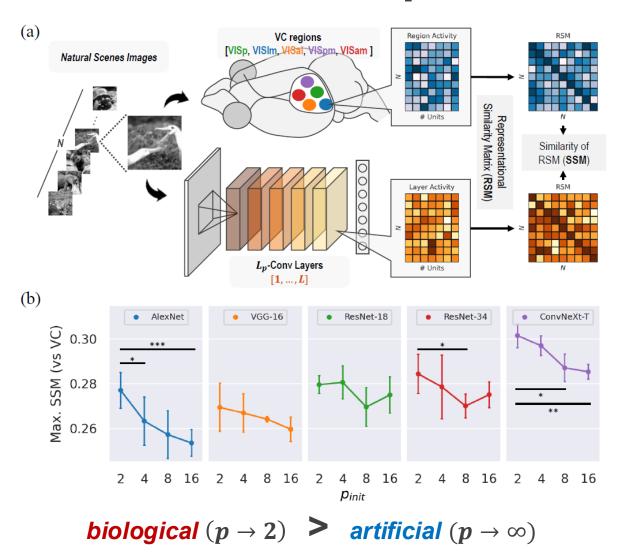




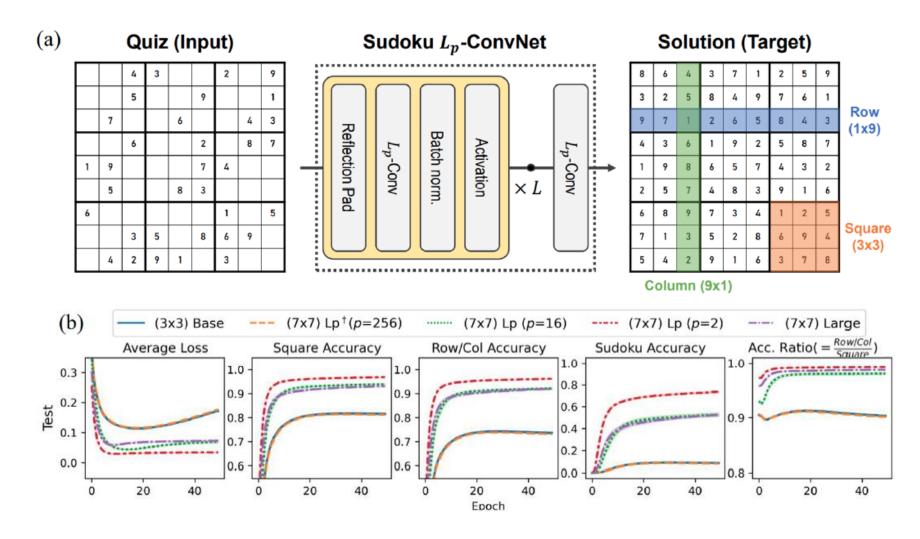
L_p -Convolution benefits traditional CNNs with large kernels in small datasets

CIFAR-100								
Layer	Kernel	p_{init}	AlexNet	VGG-16	ResNet-18	ResNet-34	ConvNeXt-T	
(Base) Conv	$k \times k$	-	66.05 ± 0.33	70.26 ± 0.29	71.22 ± 0.18	72.47 ± 0.23	58.36 ± 6.48	
(Large) Conv	$l \times l$	-	*** 54.53 ± 0.65	$**64.82 \pm 2.92$	*** 72.80 ± 0.27	$***73.52 \pm 0.11$	$^{ns}54.13 \pm 1.14$	
$^{\dagger}L_{p}$ -Conv		256	$^{ns}65.95 \pm 0.32$	$**71.03 \pm 0.38$	$^{ns}71.24 \pm 0.23$	$^{ns}72.61 \pm 0.27$	$^{ns}60.34 \pm 2.80$	
L_p -Conv		16	$**67.12 \pm 0.37$	$**70.87 \pm 0.23$	$***72.35 \pm 0.30$	$***73.32 \pm 0.23$	$^{ns}61.30 \pm 1.71$	
L_p -Conv	$l \times l$	8	$^{**}66.85 \pm 0.18$	$**71.14 \pm 0.29$	$^{***}72.26 \pm 0.28$	$***73.37 \pm 0.15$	$^{ns}59.94 \pm 5.04$	
L_p -Conv		4	$*66.68 \pm 0.28$	*** 71.71 ± 0.36	$^{***}73.00 \pm 0.15$	$^{***}74.07 \pm 0.22$	$^{ns}59.34 \pm 7.53$	
L_p -Conv		2	$^{ns}66.13 \pm 0.33$	$^{***}72.88 \pm 0.30$	$^{***}73.86 \pm 0.14$	***74.95 ± 0.11	$^{ns}62.61 \pm 3.03$	
	TinyImageNet							
Layer	Kernel	p_{init}	AlexNet	VGG-16	ResNet-18	ResNet-34	ConvNeXt-T	
(Base) Conv	$k \times k$	-	52.25 ± 0.35	67.75 ± 0.07	66.63 ± 0.51	69.22 ± 0.11	70.25 ± 0.45	
(Large) Conv	$l \times l$	-	$****35.52 \pm 0.46$	$^{ns}66.96 \pm 1.50$	68.33 ± 0.19	$^{ns}69.46 \pm 0.36$	$^{ns}68.66 \pm 1.50$	
$^{\dagger}L_{p}$ -Conv		256	$^{ns}52.60 \pm 0.12$	$^{ns}67.72 \pm 0.18$	$^{ns}66.37 \pm 0.55$	$^{ns}69.27 \pm 0.27$	$^{ns}70.45 \pm 0.44$	
L_p -Conv		16	$***53.98 \pm 0.50$	$^{***}69.29 \pm 0.25$	$**67.72 \pm 0.43$	$^{**}70.00 \pm 0.33$	$^{ns}70.62 \pm 0.30$	
L_p -Conv	$l \times l$	8	$**54.07 \pm 0.91$	$^{***}69.72 \pm 0.16$	$*67.63 \pm 0.45$	$^{***}69.81 \pm 0.23$	$^{ns}70.52 \pm 0.36$	
L_p -Conv		4	$^{***}54.30 \pm 0.48$	$^{***}69.79 \pm 0.30$	$**68.20 \pm 0.50$	$**69.99 \pm 0.44$	$^{ns}70.74 \pm 0.37$	
L_p -Conv		2	$^{***}54.13 \pm 0.53$	*** 69.96 ± 0.45	*** 68.45 ± 0.36	$^{***}70.43 \pm 0.24$	$^{\text{ns}}70.72 \pm 0.31$	

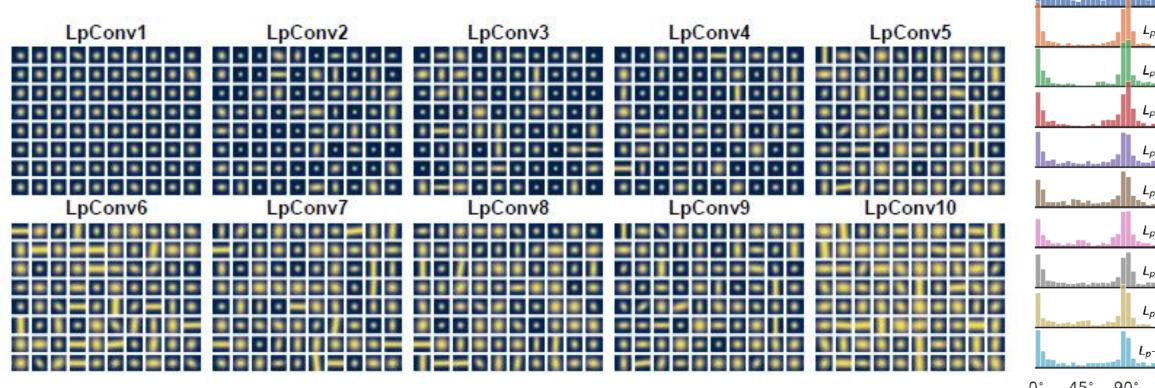
CNNs with Gaussian sparsity aligns better with brain's representation

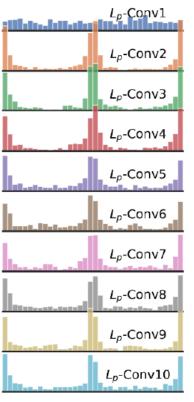


Using Sudoku challenge to investigate conformational changes in L_p -Masks



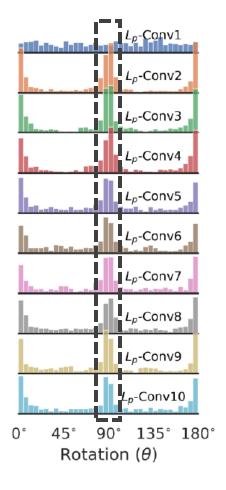
Learned L_p -Masks exhibit vertical and horizontal orientations



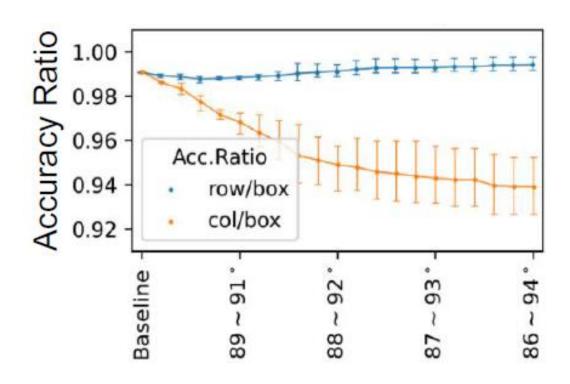


135° 180° Rotation (θ)

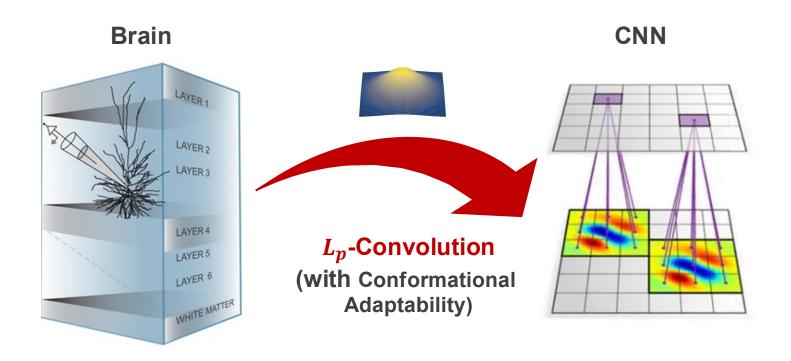
Sudoku analysis reveals task-dependent conformational adaptability of L_p -Masks



Vertical Convolutional Filter Ablation



Summary: We propose a new brain-inspired inductive bias which can further benefit CNN



CNN's inductive bias

- 1. Hierarchical structures
- 2. Local connectivity
- 3. Parameter sharing
- 4. Gaussian sparsity