

Generative Adversarial Ranking Nets

Yao Yinghua

Research Scientist, CFAR, IHPC, A*STAR, Singapore

Joint work with Yuangang Pan, Jing Li, Ivor W. Tsang, Xin Yao

Generative Modeling conditioned on Human Preferences

Model a conditional distribution p(x|C): C is a single condition

How about conditioning on a comparison $S := s^1 > s^2 > \dots > s^l$, $s^i \in X = \{x_n\}_{n=1}^N$, l < N

Training data

Generated data

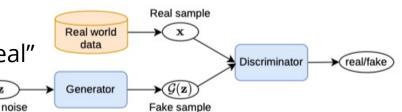
Given: training samples $X = \{x_n\}_{n=1}^N$; listwise preferences $S = \{s_m\}_{m=1}^M$ $s := s^1 > s^2 > \ldots > s^l, \quad s^i \in X, \ \forall i = 1, 2, \ldots, l, l \ll N. \tag{1}$

Learning goal: the distribution learned by the generative model $P_g(x)$ is identical to the distribution of the desired data $P_u(x)$, i.e., $P_g(x) = P_u(x)$.

• $P_{\rm u}(x)$ allocates high density to high-ranked data while low or zero density to low-ranked data.

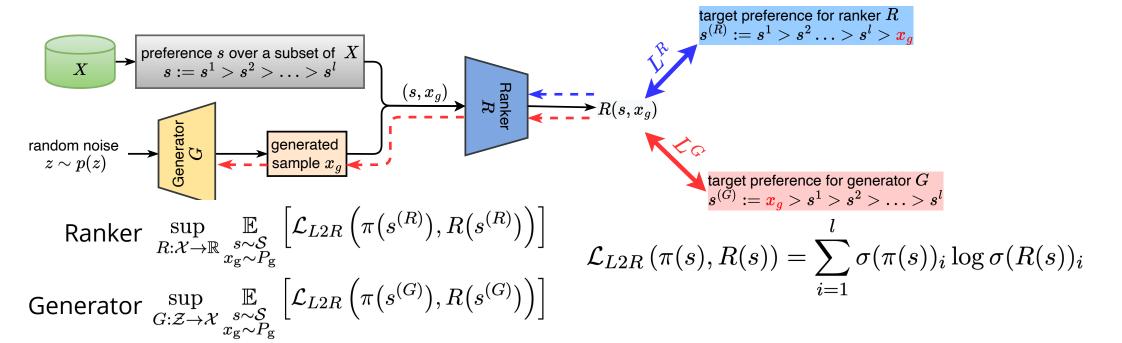
Generative Adversarial Ranking Nets (GARNet)

- Generator fools discriminator to classify generated samples as "real"
- Discriminator classifies generated samples as "fake"



Motivate our generative adversarial ranking:

- Generator fools ranker to rank generated samples x_a "top"
- Ranker ranks generated samples x_g "bottom"



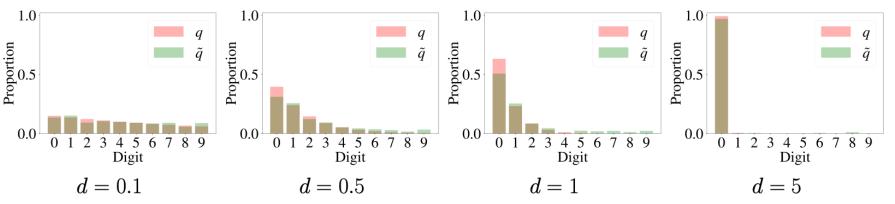
GARNet Defines a Relativistic *f*-Divergence

The optimal ranker in GARNet estimates a relativistic f-divergence between the user-preferred data distribution $P_{\rm u}$ and the generated data distribution $P_{\rm g}$:

$$D_f(P_{\mathrm{u}}, P_{\mathrm{g}}) = \sup_{R: \mathbf{X} \to \mathbb{R}} \mathbb{E}_{\substack{s \sim \mathbf{S} \\ x_{\mathrm{g}} \sim P_{\mathrm{g}}}} \left[\mathcal{L}_{L2R} \left(\pi(s^{(R)}), R(s^{(R)}) \right) \right]$$

Different from GAN: $D_f(P_{data}, P_{\rm g})$ distribution of given training data

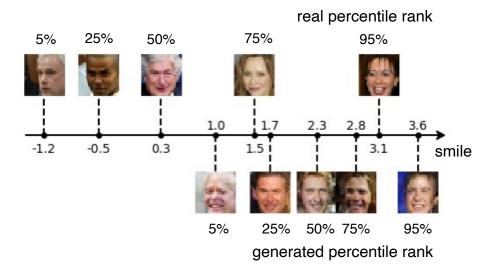
- $P_{
 m u}$ allocates higher density to higher-ranked data
- $\pi(s^{(R)})$ is arithmetic sequence with a common difference d $\pi(s^{(R)}) = [a + (T-1)d, a + (T-2)d, \dots, a, b]$
- For a sufficient large d, GARNet converges to the distribution of top-ranked data



MNIST (preferring small digits, i.e., 0 > 1 > 2 > ... > 9).

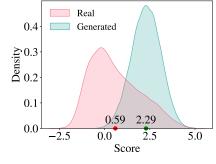
 $q = \sigma(\pi(s))$ calculates the user-specified top-1 probability of each digit. \tilde{q} calculates the proportion of different digit classes for generated data.

GARNet with Continuous Properties (single/multiple)

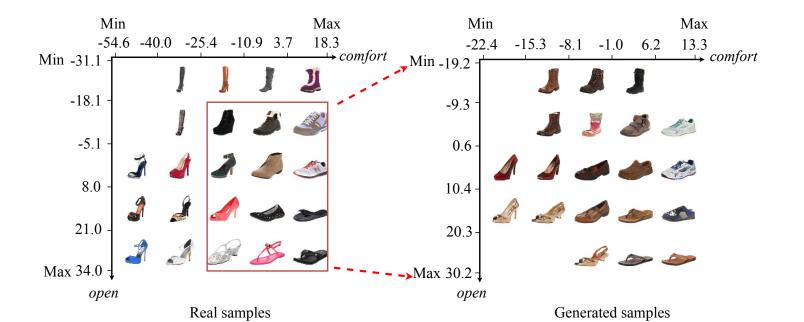


Smiling faces are preferred. The percentile rank of a given score is the percentage of scores in its frequency distribution that are



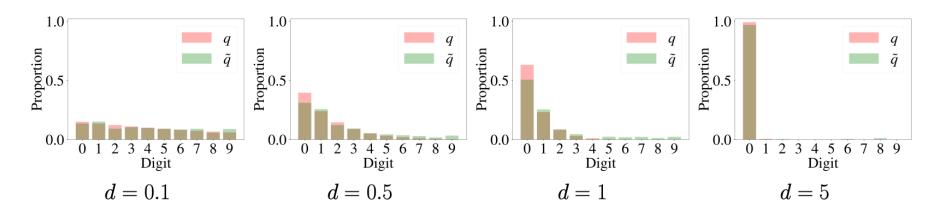


Both open and comfortable shoes are preferred simultaneously.



Discussions

- The generated data distribution converges to the user-preferred data distribution based on **full/partial** preferences involving **single/multiple discrete/continuous** properties, supported by theoretical guarantees.
- Diffusion model with preference alignment is proven to converge to the distribution of top-ranked data
- Our GARNet demonstrates distribution learning of user-preferred data in a finer-grained manner.



THANK YOU

www.a-star.edu.sg

