

Generating Less Certain Adversarial Examples Improves Robust Generalization

Minxing Zhang, Michael Backes, Xiao Zhang

CISPA Helmholtz Center for Information Security

What Does Our Work Do?

- Preliminary
- Motivation
- Adversarial Certainty
- Our Method
- Empirical Evidence
- Conclusion

Preliminary

• Robust Overfitting [1]:

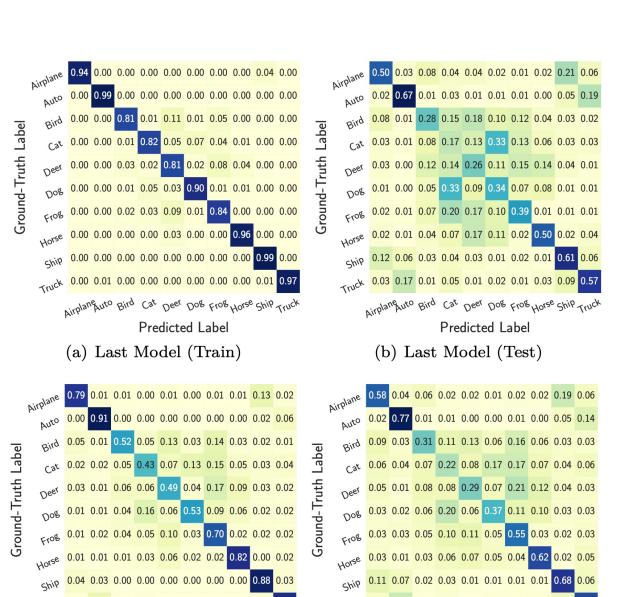



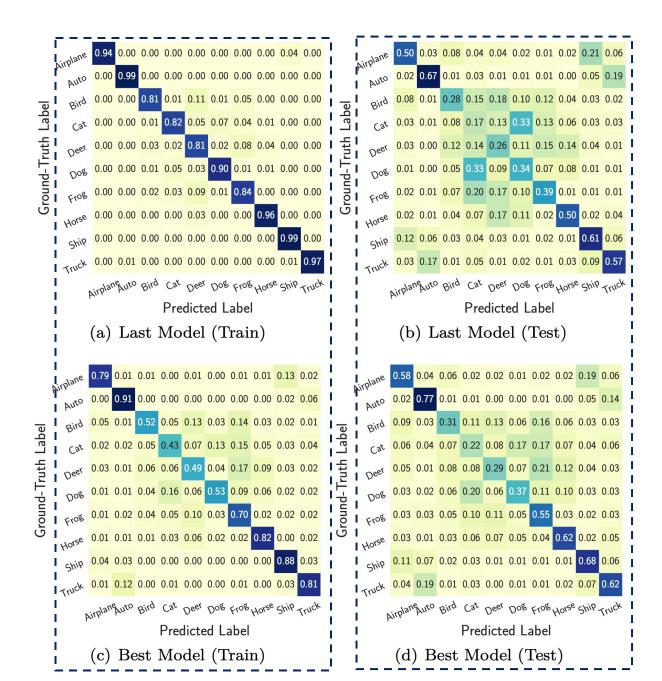
Image Source: [1]

- Heatmap Visualization
 - Adversarially-perturbed CIFAR-10

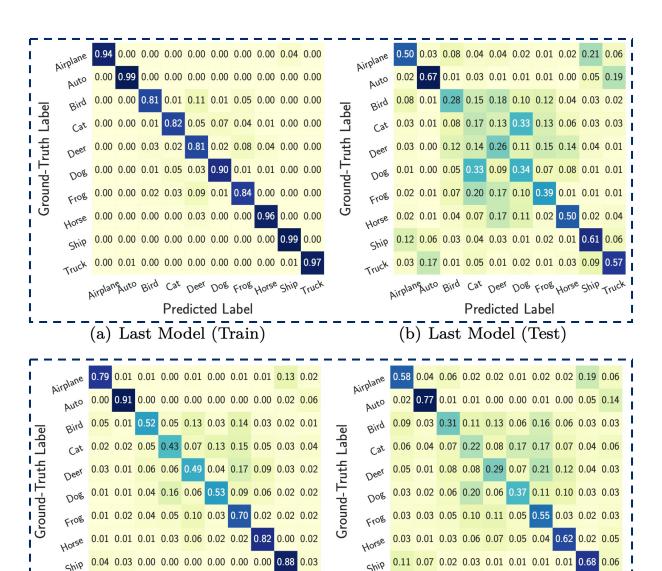
Nirplan Auto Bird Cat Deer Dog Frog Horse Ship Truck

Predicted Label

(d) Best Model (Test)

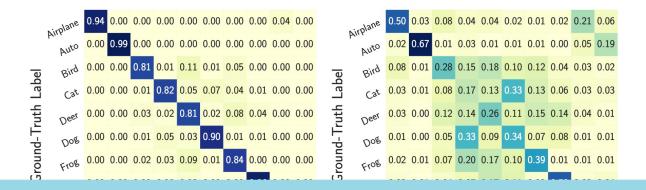

Nirolane Auto Bird Cat Deer Dog Frog Horse Ship Truck

Predicted Label

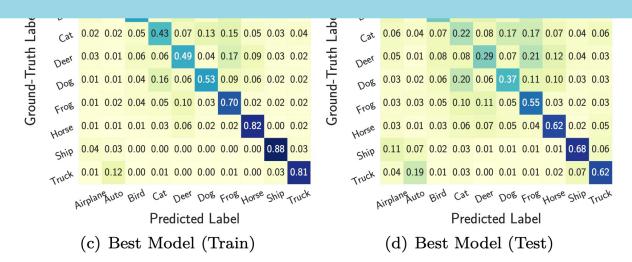

(c) Best Model (Train)

4

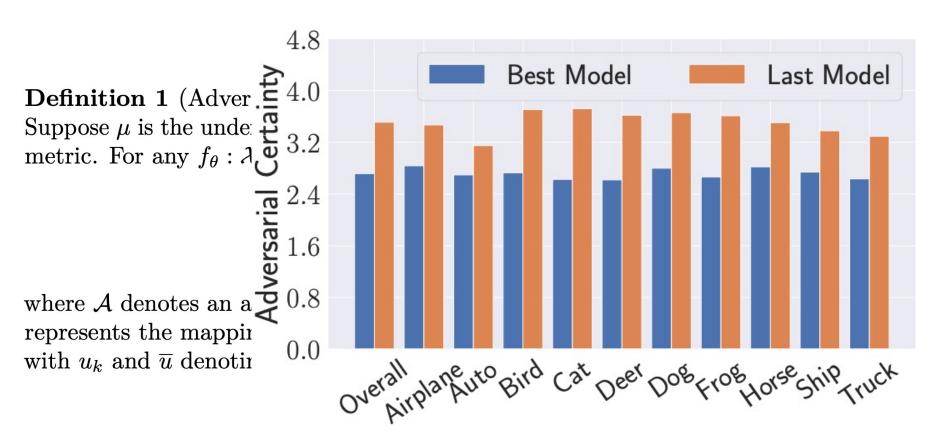
Truck 0.01 0.12 0.00 0.01 0.00 0.01 0.00 0.03 0.81


Airplane Auto Bird Cat Deer Dos Fros Horse Ship Truck
Predicted Label

(d) Best Model (Test)

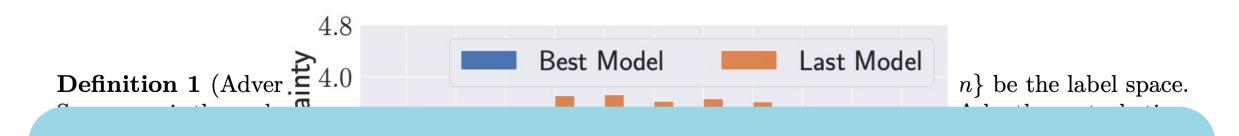

Airplan Auto Bird Cat Deer Dog Frog Horse Ship Truck

Predicted Label


Overconfidence Compromises Robustness

Definition 1 (Adversarial Certainty). Let \mathcal{X} be the input space and $\mathcal{Y} = \{1, 2, ..., m\}$ be the label space. Suppose μ is the underlying distribution and \mathcal{S} is a set of sampled examples. Let $\epsilon \geq 0$, Δ be the perturbation metric. For any $f_{\theta}: \mathcal{X} \to \mathcal{Y}$, we define the *adversarial certainty* of f_{θ} as:

$$AC_{\epsilon}(f_{\theta}; \hat{\mu}_{\mathcal{S}}, \mathcal{A}) = \frac{1}{|\mathcal{S}|} \sum_{(\boldsymbol{x}, y) \in \mathcal{S}} Var(F_{\theta}[\mathcal{A}(\boldsymbol{x}; y, f_{\theta}, \epsilon)]),$$


where \mathcal{A} denotes an attack method such as PGD attacks for generating adversarial examples, $F_{\theta}: \mathcal{X} \to \mathbb{R}^m$ represents the mapping from the input space \mathcal{X} to the logit layer of f_{θ} , and $\operatorname{Var}(\boldsymbol{u}) = \sum_{k \in [m]} (u_k - \overline{u})^2 / m$, with u_k and \overline{u} denoting the k-th element and mean of $\boldsymbol{u} \in \mathbb{R}^m$ respectively.

n} be the label space. Δ be the perturbation

amples, $F_{\theta}: \mathcal{X} \to \mathbb{R}^m$ $\sum_{k \in [m]} (u_k - \overline{u})^2 / m,$

Decreasing adversarial certainty during adversarial training can improve robust generalization.

- Decrease Adversarial Certainty (DAC)
 - Find less certain adversarial examples that are used to improve robust generalization

$$\min_{\theta \in \Theta} \frac{1}{|\mathcal{S}_{tr}|} \sum_{(\boldsymbol{x}, y) \in \mathcal{S}_{tr}} \max_{\boldsymbol{x}' \in \mathcal{B}_{\epsilon}(\boldsymbol{x})} L(f_{\theta'}, \boldsymbol{x}', y), \text{ where } \theta' = \underset{\theta' \in \mathcal{C}(\theta)}{\operatorname{argmin}} \operatorname{AC}_{\epsilon}(f_{\theta}; \mathcal{S}_{tr}, \mathcal{A}).$$

- Two-step Optimization

$$egin{aligned} heta_{t+0.5} &= heta_t - \lambda \cdot
abla_{ heta} \mathrm{AC}_{\epsilon}(f_{ heta}; \mathcal{S}_{tr}, \mathcal{A}) \Big|_{\theta = heta_t}, \ heta_{t+1} &= heta_{t+0.5} - \gamma \cdot
abla_{ heta} L_{\mathrm{rob}}(f_{ heta}; \mathcal{S}_{tr}, \mathcal{A}) \Big|_{\theta = heta_{t+0.5}}, \end{aligned}$$

Architecture	Method	Clean	PGD-20	PGD-100	CW_∞	AutoAttack
PRN18	AT + DAC	82.88 (82.68) 84.64 (83.55)	41.51 (49.23) 45.55 (52.20)	40.96 (48.92) 44.94 (51.87)	41.61 (48.07) 44.55 (50.05)	39.66 (45.71) 42.78 (48.20)
	TRADES + DAC	82.10 (81.33) 83.18 (82.80)	47.44 (51.65) 49.32 (52.90)	46.95 (51.42) 48.81 (52.67)	46.64 (49.18) 48.30 (50.11)	44.99 (48.06) 46.40 (48.96)
	MART	80.85 (78.27) 81.12 (79.37)	50.23 (52.28) 52.38 (53.25)	49.71 (52.13) 52.04 (53.14)	46.88 (47.83) 48.97 (49.25)	44.68 (46.01) 47.24 (47.69)
WRN34	AT + DAC	86.47 (85.86) 86.48 (85.10)	47.25 (55.31) 52.02 (57.93)	46.73 (55.00) 51.69 (57.68)	47.85 (54.04) 51.51 (54.98)	45.84 (51.94) 49.75 (53.33)
	TRADES + DAC	83.37 (81.40) 85.04 (84.55)	51.51 (58.78) 58.97 (60.96)	51.28 (58.72) 58.97 (60.81)	49.26 (53.33) 52.79 (55.00)	47.74 (52.63) 51.80 (53.99)
	MART	83.11 (83.30) 84.69 (80.09)	48.93 (58.13) 52.00 (59.31)	48.31 (57.75) 51.32 (59.26)	46.32 (52.22) 49.50 (53.02)	44.89 (50.31) 47.65 (51.48)

Notion of adversarial certainty

• Importance of generating less certain adversarial examples for robust generalization

• Better understanding of robust generalization

Thanks

Minxing Zhang – Ph.D. Candidate

CISPA Helmholtz Center for Information Security