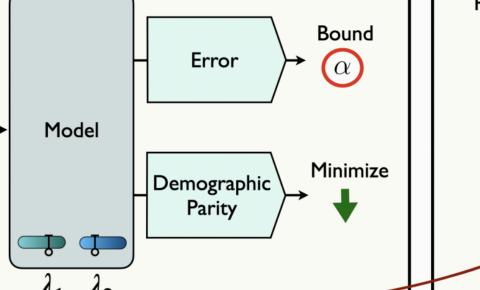


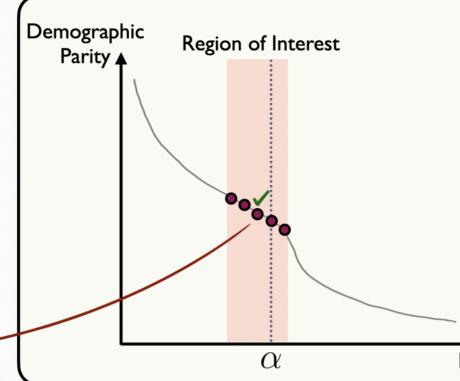
Risk Controlling Model Selection via Guided Bayesian Optimization

Engineering, ECE
The Iby and Aladar Fleischman Faculty of

Bracha Laufer Goldshtein¹, Adam Fisch², Regina Barzilay³, Tommi Jaakkola³

Tel Aviv University¹, Goole Deepmind², MIT CSAIL³





Degree of Sparsification

Idea

Computationally and statistically efficient method for selecting model configurations that control multiple risks while minimizing an additional free objective function.

Problem Formulation

Model $f: X \times \Lambda \to Y$ configured by n hyper-parameters $\lambda = (\lambda_1, ..., \lambda_n) \in \Lambda$

User-defined objective functions

$$\mathcal{C}_i(\lambda) = \mathbb{E}\left[L_i(X, Y; \lambda)\right] \quad i \in \{1, ..., c+1\}$$

Control

Minimize

$$\mathscr{C}_1(\lambda), \ldots, \mathscr{C}_c(\lambda)$$
 $\mathscr{C}_{c+1}(\lambda)$

bound by $a_1, ..., a_c$ with high

Let $\mathcal{D}_{cal} = \{(X_i, Y_i)\}_{i=1}^m$ be an i.i.d. calibration set used for selecting a hyper-parameter combination λ .

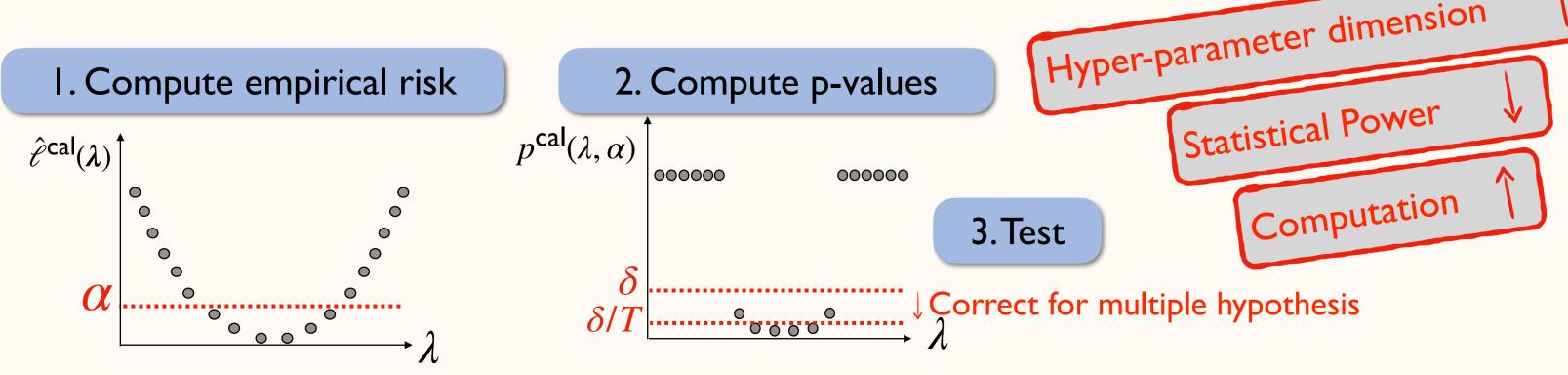
Chosen combination is (α, δ) -risk controlling if:

$$\mathbb{P}\left(\mathcal{E}_i(\hat{\lambda}) < \alpha_i\right) \ge 1 - \delta \quad \forall i \in \{1, \dots, c\}$$

Select (α, δ) -risk controlling configuration, which minimizes ℓ_{c+1} .

Learn then Test [Angelopoulos et. al., 2021]

Configuration selection as Hypothesis Testing - null hypothesis $H_{\lambda}: \mathcal{C}(\lambda) > \alpha$



Pareto Testing [Laufer-Goldshtein et. al. ,2023]

Key Steps

- Solve a multi-objective optimization problem
- Recover the Pareto front
- Perform fixed sequence testing over the front

Drawback

Pareto front includes irrelevant configurations

- High risk unlikely to pass the test
- Low risk inefficient w.r.t. the free objective

It might be too sparse near the limit

Region of Interest

GuideBO

hypervolume indicator:

 $HV(\hat{\mathscr{P}}; \mathbf{r}) =$

Key Idea

- Define a region of interest in the objective space.
- Focus on configurations that are both efficient and valid.
- Include values that are likely to correspond to α^{max} , the maximum value that can pass the test.

• Given an approximated Pareto front $\widehat{\mathscr{P}}$, the

 $H(\hat{\mathscr{P}};\mathbf{r}) = \{\mathbf{z} \in \mathbb{R}^d : \exists \, \mathbf{p} \in \hat{\mathscr{P}} : \mathbf{p} \prec \mathbf{z} \prec \mathbf{r}\}.$

• Modify HVI to capture the region of interest.

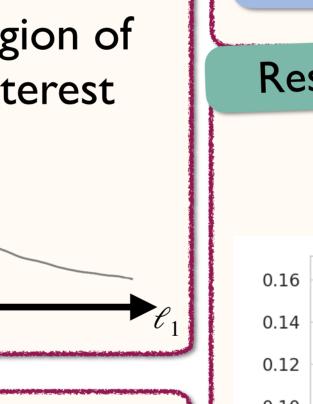
• Define $\mathbf{r} \in \mathbb{R}^{c+1}$ to enclose the desired region.

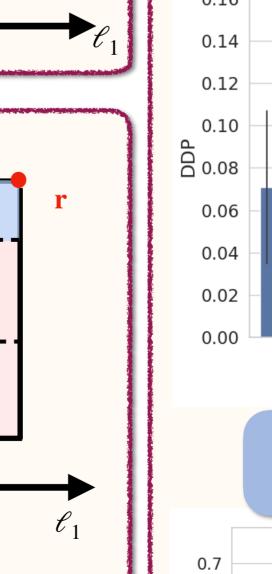
• Incorporate into a Bayesian optimization procedure.

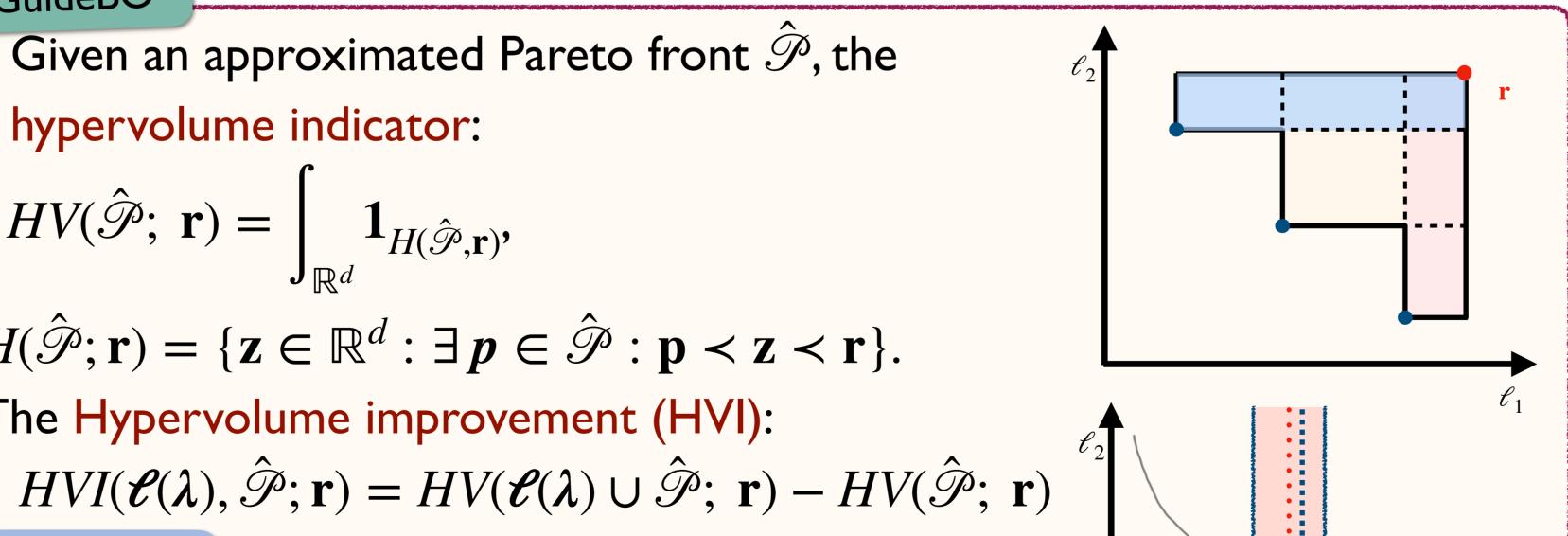
The Hypervolume improvement (HVI):

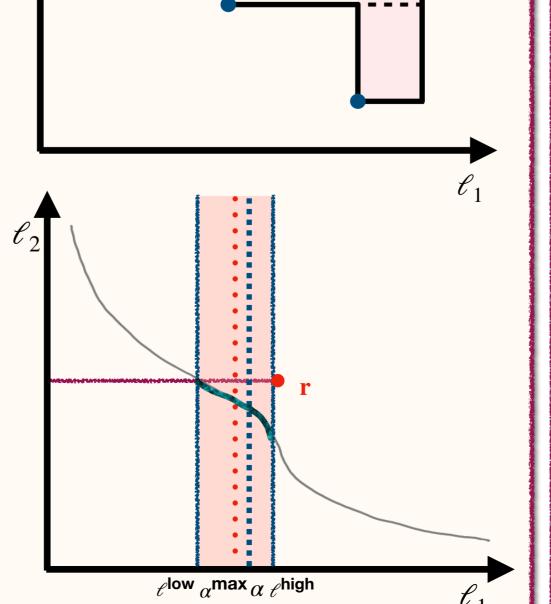
Region of Interest

α Pareto Frontier









Results Fairness Pruning

Tasks

Fairness

Robustness

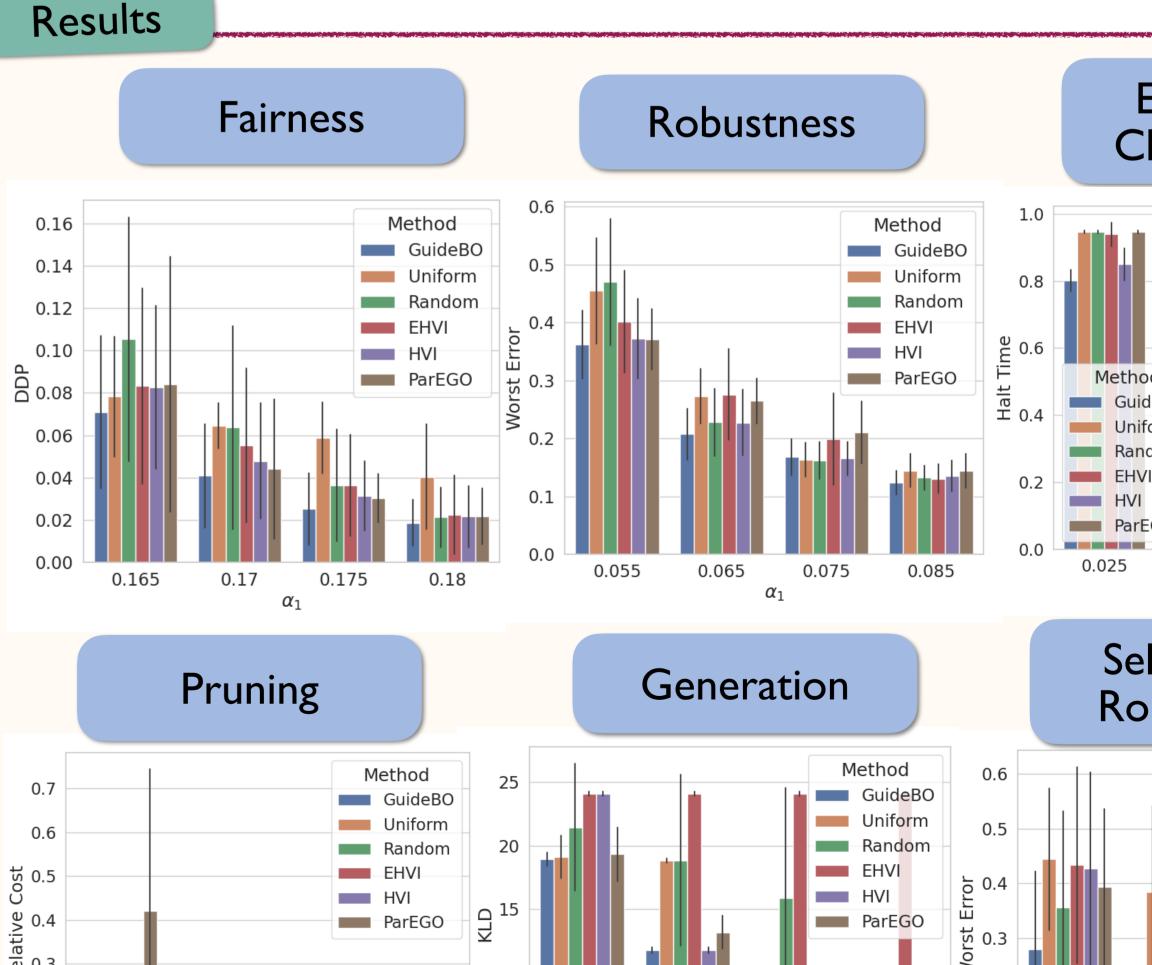
Selective +

Robustness

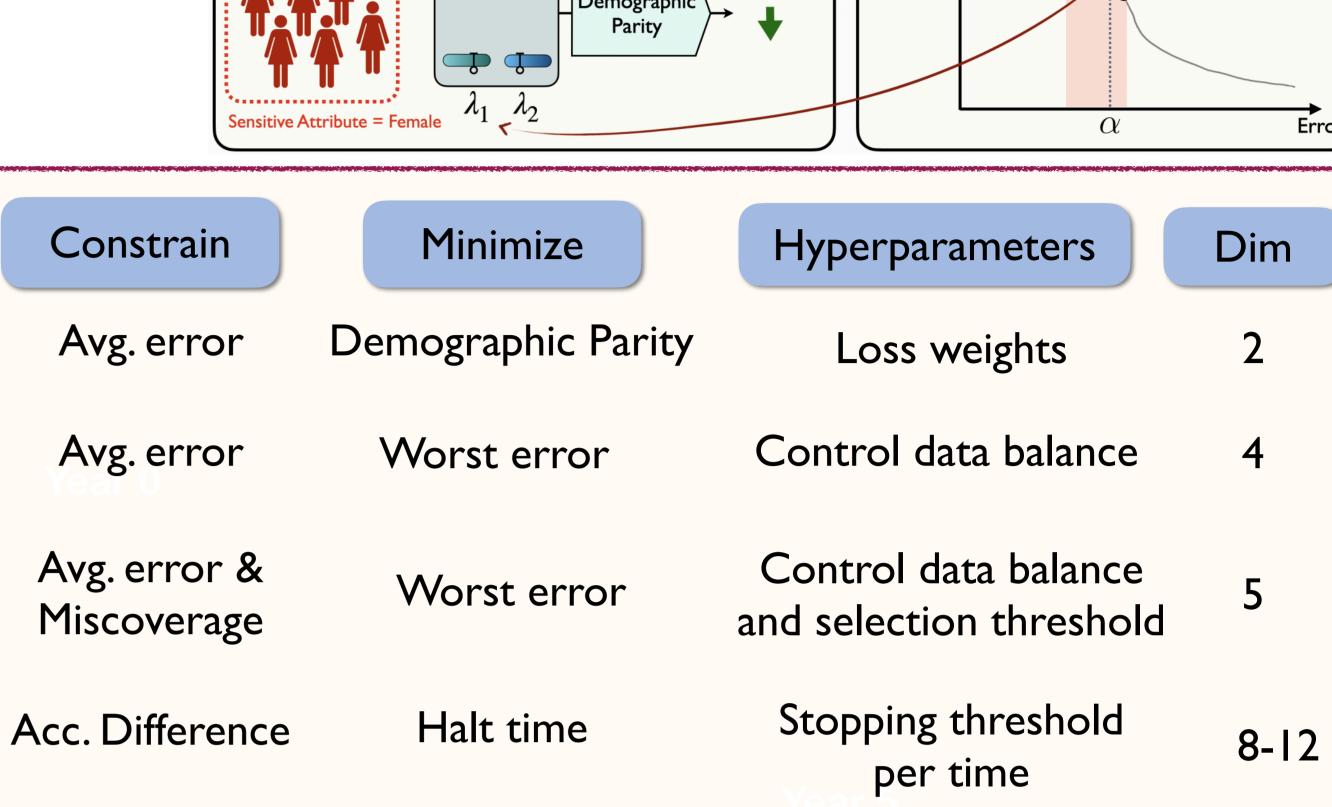
Early-Time

Classification

Pruning



Acc. Difference



Relative Cost

