Learning multi-modal generative models with permutation-invariant encoders and tighter variational objectives

Marcel Hirt ¹ Domenico Campolo ¹ Victoria Leong ¹ Juan-Pablo Ortega ¹

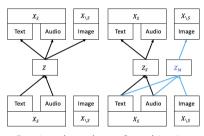
¹Nanyang Technological University, Singapore

Overview

- Multi-modal generative models such as Variational Autoencoders (VAEs) aim to learn representations that capture shared content across multiple modalities in addition to modality-specific information.
- Various objective functions for such models have been suggested, often motivated as lower bounds on the multi-modal data log-likelihood or from information-theoretic considerations
- Fixed aggregation schemes such as Product-of-Experts (PoE) or Mixture-of-Experts (MoE) are commonly used to encode latent variables from different modality subsets.
- In contrast to previous works, we consider a variational objective that can tightly approximate the multi-modal data log-likelihood (LLH).
- We develop more flexible aggregation schemes that avoid inductive biases in PoE or MoE approaches by combining encoded features from different modalities based on permutation-invariant neural networks.

2 / 8

Reconstruction and cross-modal prediction for multi-modal models



Previous bound Our objective

Previous mixture-based bound:

$$\mathbb{E}_{q_{\phi}(z|x_{\mathcal{S}})}\left[\log p_{\theta}(x|z)\right] - \beta \mathsf{KL}(q_{\phi}(z|x_{\mathcal{S}})|p_{\theta}(z)).$$

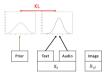
Our objective:

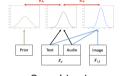
$$\mathbb{E}_{q_{\phi}(z|x_{\mathcal{S}})} \left[\log p_{\theta}(x_{\mathcal{S}}|z) \right] - \beta \mathsf{KL}(q_{\phi}(z|x_{\mathcal{S}})|p_{\theta}(z)) \\ + \mathbb{E}_{q_{\phi}(z|x)} \left[\log \log p_{\theta}(x_{\setminus \mathcal{S}}|z) \right] - \beta \mathsf{KL}(q_{\phi}(z|x)|q_{\phi}(z|x_{\mathcal{S}})).$$

The mixture-based bound resorts to a single latent variable $Z \sim q_{\phi}(\cdot|x_{\mathcal{S}})$ that encodes information from a modality subset $x_{\mathcal{S}}$ and is trained to reconstruct conditioning modalities $x_{\mathcal{S}}$, and predict masked modalities $x_{\setminus \mathcal{S}}$. Our objective relies on two latent variables $Z_{\mathcal{S}} \sim q_{\phi}(\cdot|x_{\mathcal{S}})$, and $Z_{\mathcal{M}} \sim q_{\phi}(\cdot|x_{\mathcal{S}},x_{\setminus \mathcal{S}})$, where $Z_{\mathcal{S}}$ learns to reconstruct all its conditioning modalities, and $Z_{\mathcal{M}}$ learns to reconstruct the remaining modalities.

KL-Regularization for multi-modal models and log-likelihood approximations

Previous mixture-based bound $\mathcal{L}_{\theta,\phi}^{\mathsf{Mix}}$:





Previous bound

Our objective

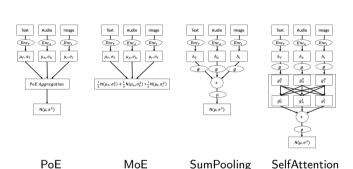
$$\mathbb{E}_{p_d(x)}[\log p_\theta(x)] dx \geq \mathbb{E}_{p_d(x)}[\mathcal{L}_{\theta,\phi}^{\mathsf{Mix}}(x)] + \mathcal{H}(p_d(X_{\setminus \mathcal{S}}|X_{\mathcal{S}})).$$

Our objective $\mathcal{L}_{\theta,\phi}$ for idealized encoders:

$$\mathbb{E}_{p_d(x)}[\log p_\theta(x)]dx = \mathbb{E}_{p_d(x)}[\mathcal{L}_{\theta,\phi^*}(x)].$$

In addition to minimizing the KL divergence between the encoding distribution given a modality subset x_S and a prior distribution in the mixture-based bound, our objective aims to minimize the KL divergence between the encoding distribution given all modalities relative to the encoding distribution of a modality subset x_S . The conditional part of our objective is an approximation to the conditional log-likelihood $\log p_\theta(x_{\setminus S}|x_S)$, and becomes a true lower bound only if $q_\phi(z|x_S) = p_\theta(z|x_S)$.

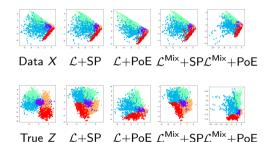
Permutation-invariant modality encoding



We want to learn encoding distributions for all modality subsets. The common scalable approach is to first encode each modality onto some feature H_s . These features are then aggregated using permutation-invariant functions.

We learn these aggregation schemes instead of previous approaches where these are given implictly via PoEs or MoEs. A Sum-Pooling (SP) model sums up the encoded features before projecting them onto the variational parameters. Pairwise interactions between the encoded modalities can be accounted for by adding a self-attention layer.

Weak identifiability of conditional or multi-modal models



Identifiability can be achieved in conditional models for the posterior distribution which is however not the optimal encoding distribution for the mixture based bound or satisfies a MoE/PoE aggregation scheme.

Auxiliary labels as modalities. The true latent variables are Gaussian distributed with means and variances modulated by the label modality (color-coded). The continuous data modality with reconstructions in the top row. True and inferred latent variables are shown in the bottom row with a linear transformation indeterminacy.

MNIST(M)-SVHN(S)-Text(T)

Table 1: Test LLH estimates for the joint data (M+S+T) and marginal data.

	Proposed objective				Mixture bound			
Aggregation	M+S+T	М	S	Т	M+S+T	М	S	Т
PoE+	6872 (9.62)	2599 (5.6)	4317 (1.1)	-9 (0.2)	5900 (10)	2449 (10.4)	3443 (11.7)	-19 (0.4)
PoE	6775 (54.9)	2585 (18.7)	4250 (8.1)	-10 (2.2)	5813 (1.2)	2432 (11.6)	3390 (17.5)	-19 (0.1)
MoE+	5428 (73.5)	2391 (104)	3378 (92.9)	-74 (88.7)	5420 (60.1)	2364 (33.5)	3350 (58.1)	-112 (133.4)
MoE	5597 (26.7)	2449 (7.6)	3557 (26.4)	-11 (0.1)	5485 (4.6)	2343 (1.8)	3415 (5.0)	-17 (0.4)
SumPooling	7056 (124)	2478 (9.3)	4640 (114)	-6 (0.0)	6130 (4.4)	2470 (10.3)	3660 (1.5)	-16 (1.6)
SelfAttention	7011 (57.9)	2508 (18.2)	4555 (38.1)	-7 (0.5)	6127 (26.1)	2510 (12.7)	3621 (8.5)	-13 (0.2)

For our numerical experiments, we find that our variational objective and more flexible aggregation models achieve higher log-likelihoods. Although the mixture-based bound can lead to inexact and average predictions or reconstructions, it can lead to improved cross-modal predictions.

Acknowledgments

This work is supported by funding from the Wellcome Leap 1kD Program and by the RIE2025 Human Potential Programme Prenatal/Early Childhood Grant (H22P0M0002), administered by A*STAR. The computational work for this article was partially performed on resources of the National Supercomputing Centre, Singapore (https://www.nscc.sg).