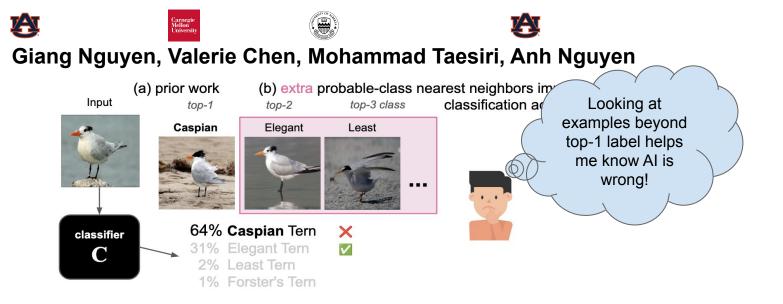
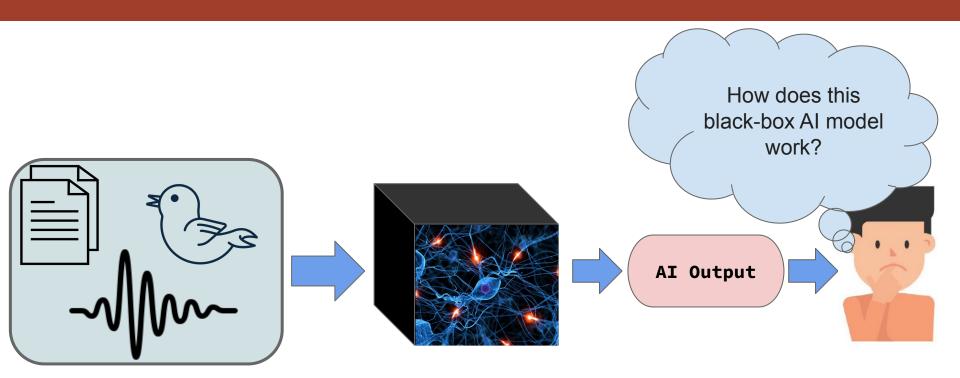




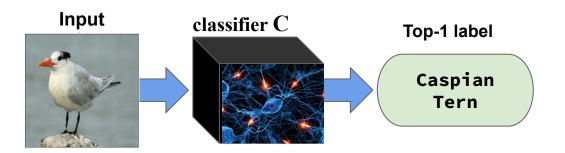
# Probable-class Nearest-neighbor Explanations Improve AI & Human Accuracy



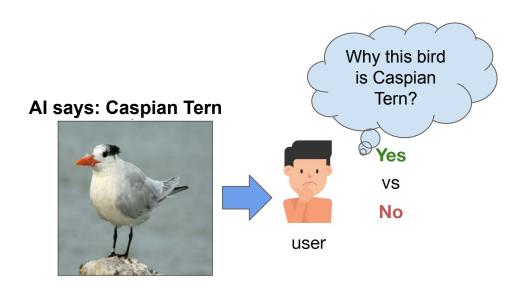
### Motivation



# Background

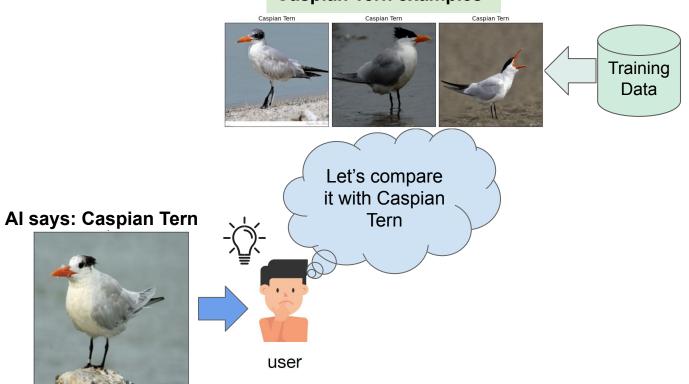


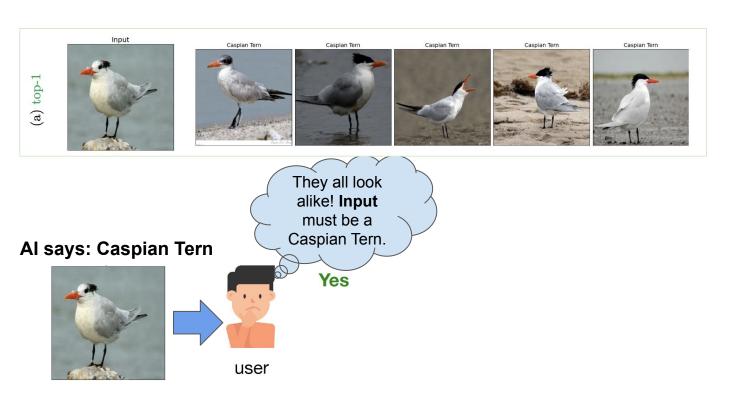
# Background



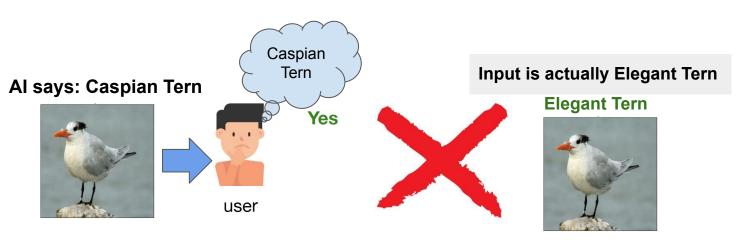
# Background

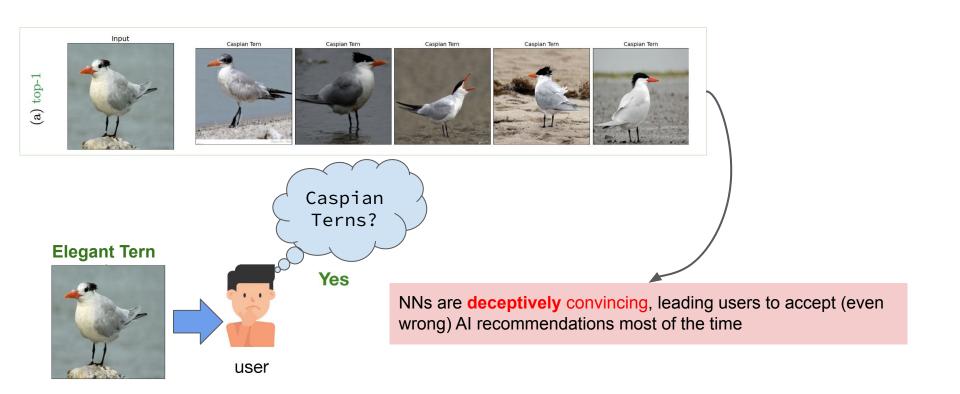
### **Caspian Tern examples**

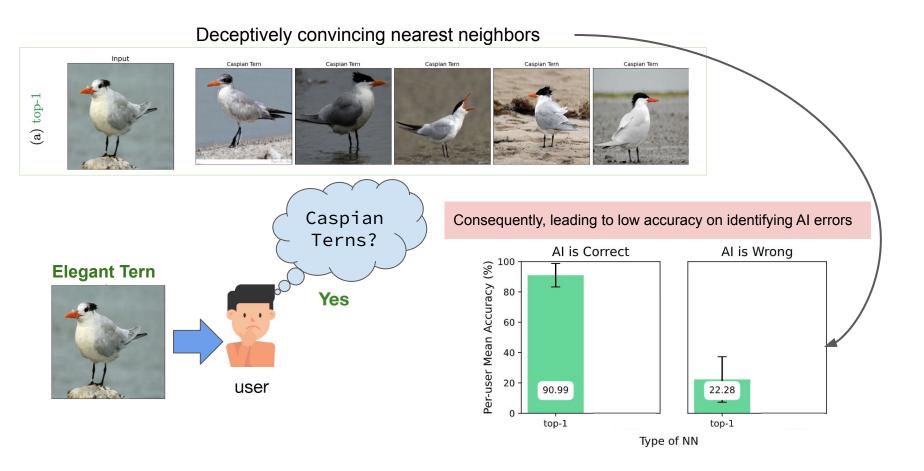










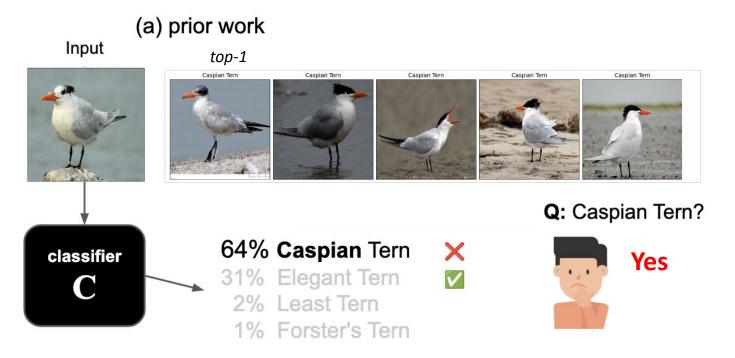


### Research question

### Research question:

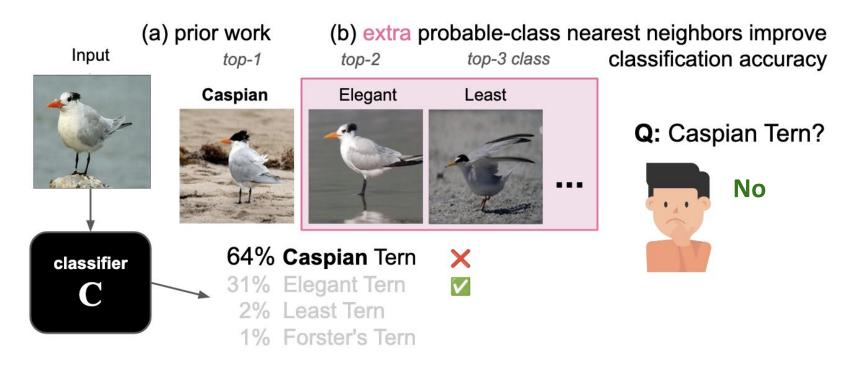
☐ 1. (Interpretability) Can we leverage the rich information from nearest-neighbor explanations to mitigate the deception?

### Probable-class nearest neighbors (PCNN)



Prior work (a) often shows only the nearest neighbors from the top-1 predicted class as explanations for the decision, which often fools humans into accepting wrong decisions (here, Caspian Tern) due to the similarity between the input and top-1 class examples

### Probable-class nearest neighbors (PCNN)



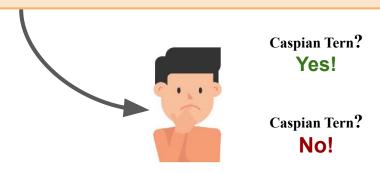
Instead, we present extra nearest neighbors (b) from top-2 to top-K classes that improves human accuracy when AI is wrong via providing contrastive evidence.

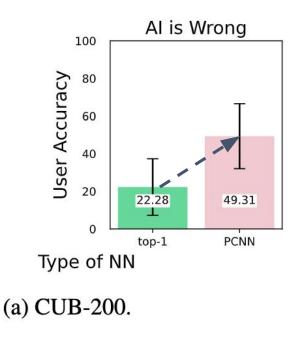


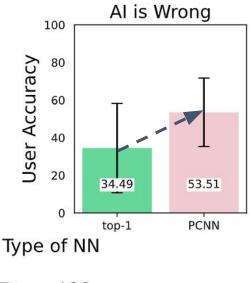
Human evaluation settings where users assess whether the top-1 predicted label is correct or incorrect



Sam guessed the Input image is **Caspian Tern** with 64% confidence. Is this bird a **Caspian Tern**?

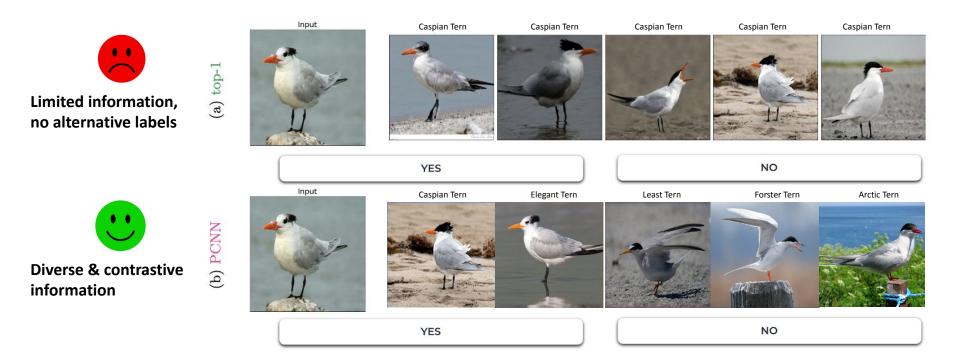




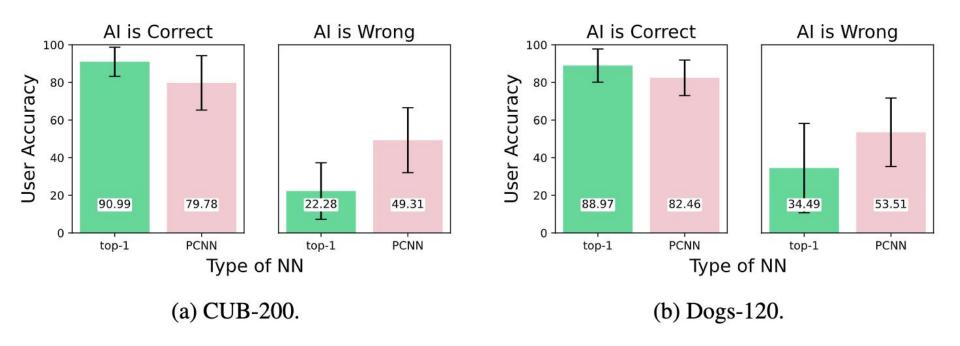


(b) Dogs-120.

**Finding 1:** In both settings (CUB-200 and Dogs-120), humans show significantly improved accuracy in identifying AI errors.



PCNN's richer information helps users distinguish similar species, while top-1 predictions provide little context and no alternative labels, leading to easier acceptance of errors.



**Finding 2:** On all (correct & wrong) samples, PCNN improves user accuracy by 10 points on CUB-200 (54.55%  $\rightarrow$  64.58%) and over 5 points on Dogs-120 (63.55%  $\rightarrow$  69.21%).

### Pretrained image classifiers struggle with close species



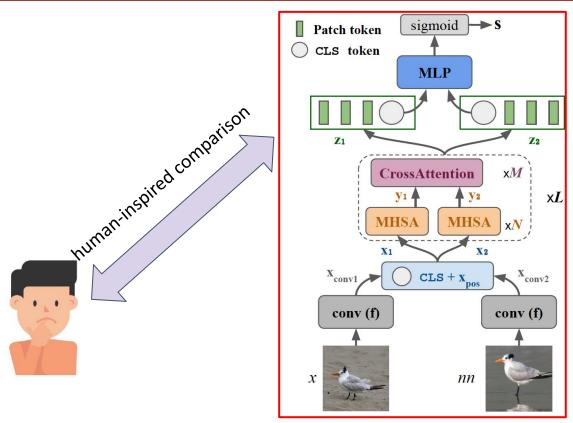
Pretrained image classifiers often struggle to distinguish with close species

### Research question

### Research question:

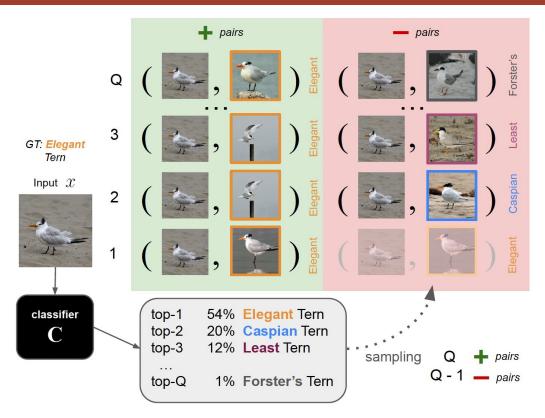
- 1. (Interpretability) Can we leverage the rich information from nearest-neighbor explanations to mitigate the deception?
- □ 2. (Accuracy) Can pretrained models benefit from the rich information of probable-class nearest neighbors (PCNN)?

## Image comparator network S

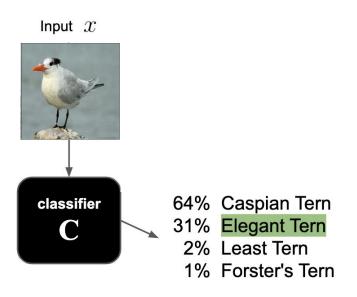


A novel image comparator network S that takes two images as input and outputs a probability score  $[0\rightarrow1]$  indicating the likelihood that they belong to the same class

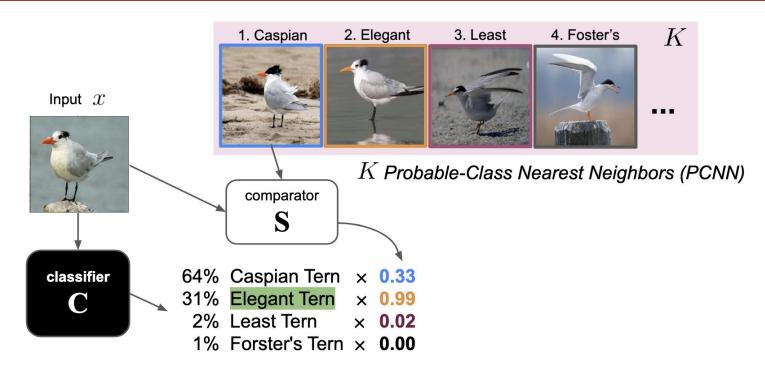
### Sampling algorithm for training S



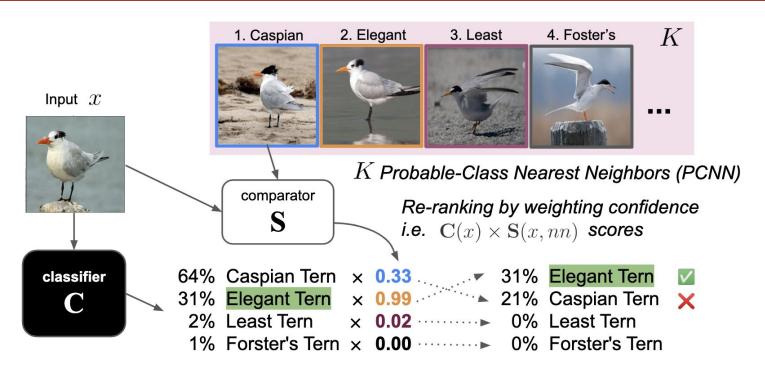
A sampling algorithm for selecting positive and negative image pairs to train the image comparator S. The classes (top1  $\rightarrow$  Q) are determined based on the likelihood scores of classifier C for the input x



First, pretrained classifier C predicts the label for input *x* 



Then, from each class among the top-K predicted classes by  $\mathbb{C}$ , we find the nearest neighbor nn to the input x and compute a sigmoid similarity score S(x, nn)



These scores weight the original C(x) probabilities, re-ranking the labels (here **Elegant Tern** was pushed into top-1 label).

C: Original pretrained image classifier

 $C \rightarrow S$ : Reranking with similarity scores from S only

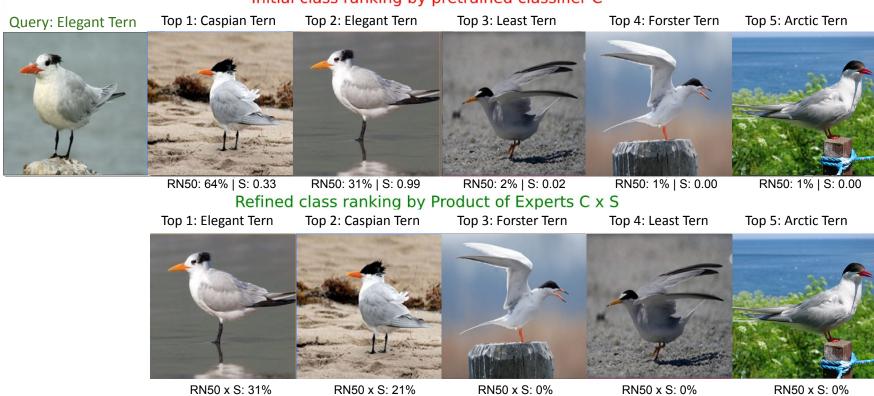
C x S: Reranking with weighted probabilities C\*S

| Classifier architecture |             | ResNet-18 (a) |                             | ResNet-34 (b)                  |       |                             | ResNet-50 (c)                  |              |                             |                                |
|-------------------------|-------------|---------------|-----------------------------|--------------------------------|-------|-----------------------------|--------------------------------|--------------|-----------------------------|--------------------------------|
| Dataset                 | Pretraining | C             | $\mathbf{C} \to \mathbf{S}$ | $\mathbf{C} \times \mathbf{S}$ | C     | $\mathbf{C} \to \mathbf{S}$ | $\mathbf{C} \times \mathbf{S}$ | $\mathbf{C}$ | $\mathbf{C} \to \mathbf{S}$ | $\mathbf{C} \times \mathbf{S}$ |
| CUB-200                 | iNaturalist | n/a           | n/a                         | n/a                            | n/a   | n/a                         | n/a                            | 85.83        | 87.72                       | 88.59 (+2.76)                  |
| COD-200                 | ImageNet    | 60.22         | 66.78                       | 71.09 (+10.87)                 | 62.81 | 71.92                       | 74.59 (+11.78)                 | 62.98        | 71.63                       | 74.46 (+11.48)                 |
| Cars-196                | ImageNet    | 86.17         | 85.70                       | 88.27 (+2.10)                  | 82.99 | 83.57                       | 86.02 (+3.03)                  | 89.73        | 89.90                       | 91.06 (+1.33)                  |
| Dogs-120                | ImageNet    | 78.75         | 75.34                       | 79.58 (+0.83)                  | 82.58 | 80.82                       | 83.62 (+1.04)                  | 85.82        | 83.39                       | 86.31 (+0.49)                  |

Reranking with image comparator S consistently improves over the pretrained classifier C

### Reranking for CUB-200

#### Initial class ranking by pretrained classifier C



CUB-200 re-ranking: Caspian Tern → Elegant Tern

### Reranking for Cars-196

#### Initial class ranking by pretrained classifier C



### Refined class ranking by Product of Experts C x S



Cars-196 re-ranking: BMW M6 → Jaguar XK

### Reranking for Dogs-120

#### Initial class ranking by pretrained classifier C



Refined class ranking by Product of Experts C x S



Dogs-120 re-ranking: Irish Terrier → Otterhound

### Achieving state-of-the-art accuracy on FG classification

| Classifier                                 | $\mathbf{E}\mathbf{x}$ | Img | Patch | R | Acc               |
|--------------------------------------------|------------------------|-----|-------|---|-------------------|
| k-NN + cosine <u>Taesiri et al.</u> (2022) | 1                      | 1   | -     | - | 85.46             |
| k-NN + S                                   | 1                      | 1   | -     | - | 86.88             |
| ProtoPNet Chen et al. (2019)               | -                      | -   | 1     | - | $81.10^{\dagger}$ |
| PIPNet Nauta et al. (2023)                 | -                      | -   | /     | - | 82.00             |
| ProtoTree Nauta et al. (2021)              | -                      | -   | 1     | - | 82.20             |
| ProtoPool Rymarczyk et al. (2022)          | -                      | -   | 1     | - | 85.50             |
| Def-ProtoPNet Donnelly et al. (2021)       | -                      | -   | /     | - | 86.40             |
| TesNet Wang et al. (2021)                  |                        | -   | 1     | = | $86.50^{\dagger}$ |
| ST-ProtoPNet Wang et al. (2023b)           |                        | -   | 1     | - | 86.60             |
| ProtoKNN Ukai et al. (2023)                | 1                      | -   | 1     | - | 87.00             |
| CHM-Corr Taesiri et al. (2022)             | 1                      | 1   | 1     | 1 | 83.27             |
| EMD-Corr Taesiri et al. (2022)             | 1                      | 1   | 1     | 1 | 84.98             |
| C S ()                                     |                        | 1   |       | , | 88.59             |
| $\mathbf{C} \times \mathbf{S}$ (ours)      | •                      | •   | _     | • | ± 0.17            |
|                                            |                        |     |       |   |                   |

| Classifier                            | $\mathbf{E}\mathbf{x}$ | Img | Patch | R  | Acc               |
|---------------------------------------|------------------------|-----|-------|----|-------------------|
| k-NN + cosine                         | 1                      | 1   | -     | -  | 87.48             |
| $k$ -NN + $\mathbf{S}$                | 1                      | 1   | -     | -  | 88.90             |
| ProtoPNet                             |                        | ×=  | 1     | -  | $85.31^{\dagger}$ |
| ProtoPShare                           | -1                     | -   | 1     |    | $86.40^{*}$       |
| PIPNet                                | -                      | -   | 1     | -  | 86.50             |
| ProtoTree                             | -1                     | - · | 1     | -  | 86.60             |
| ProtoPool                             | -1                     | - ' | 1     | -1 | 88.90             |
| ProtoKNN                              | 1                      | -   | 1     | -1 | 90.20             |
| CHM-Corr                              | 1                      | 1   | 1     | 1  | 85.03             |
| EMD-Corr                              | 1                      | 1   | 1     | 1  | 87.40             |
| $\mathbf{C} \times \mathbf{S}$ (ours) | ) /                    | 1   | -     | 1  | 91.06             |
| C × B (ours)                          |                        |     |       |    | ± 0.15            |

| Classifier                            | $\mathbf{E}\mathbf{x}$ | Img | Patch | $\mathbf{R}$ | Acc                 |
|---------------------------------------|------------------------|-----|-------|--------------|---------------------|
| k-NN + cosine                         | 1                      | 1   | -     | -            | 85.56               |
| k-NN + S                              | 1                      | 1   | -     | -            | 82.33               |
| ProtoPNet                             | -                      | -   | 1     | -            | $76.40^{\dagger}$   |
| TesNet                                | -                      | -   | 1     | -            | $82.40^{\dagger}$   |
| Def-ProtoPNet                         | -                      | 1-1 | 1     | -            | $82.20^{\dagger}$   |
| ST-ProtoPNet                          | -                      | -   | 1     | -            | 84.00               |
| MGProto                               | -                      | -   | 1     | -            | 85.40               |
| CHM-Corr                              | 1                      | 1   | 1     | 1            | 85.59               |
| EMD-Corr                              | 1                      | 1   | 1     | 1            | 85.57               |
| $\mathbf{C} \times \mathbf{S}$ (ours) | 1                      | 1   | -     | 1            | <b>86.31</b> ± 0.03 |

(c) Dogs-120

(a) CUB-200

(b) Cars-196

## Summary







Anh

Giang

Valerie

Mohammad

#### Take-away messages:

- Probable-class nearest neighbors improve human accuracy on fine-grained images by providing contrastive evidence rather than solely supportive (top-1) evidence.
- Probable-class nearest neighbors aid in training an image comparator, significantly improving the image classification accuracy of pretrained models.

#### **Future Works:**

- Improving interpretability of LLMs/VLMs by displaying multimodal contrastive evidence behind answers.
- Improving accuracy of LLMs/VLMs via first answer, then deep think via comparing with supportive/contrastive evidence (2-stage generation).

#### Acknowledgements:

- Transactions on Machine Learning Research for inviting us to present at ICLR.
- Son Nguyen and Hung Dao from KAIST; Peijie Chen, Thang Pham, and Pooyan R. for valuable.
- 3. NaphCare Foundation, Adobe Research, and Auburn University for financial support.