Extreme Risk Mitigation in Reinforcement Learning Using Extreme Value Theory

Karthik Somayaji NS Yu Wang Malachi Schram,

Jan Drgona Mahantesh Halappanavar

Frank Liu Peng Li

UCSB

Background

Distributional RL

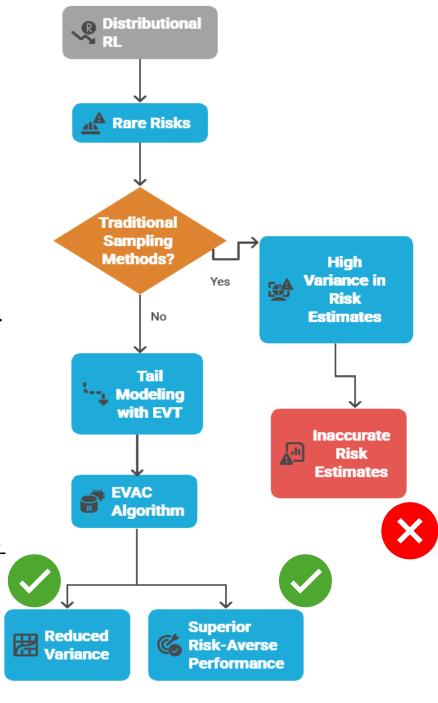
- Instead of expected return models the **entire distribution** of possible returns.
- Captures the full uncertainty and variability in outcomes essential for safety-critical decisions.

Rare Risks

- Catastrophic events that **occur infrequently** but can have severe consequences.
- Represent infrequent but catastrophic events lying in the tail of the return distribution.
- Traditional sampling methods struggle to accurately model these low-probability events, leading to high variance in risk estimates.

Our Contributions

- **Tail Modeling with EVT:** Leverage Extreme Value Theory to model the tail of the return distribution using a Generalized Pareto Distribution (GPD).
- **EVAC Algorithm:** Develop a novel Extreme Valued Actor-Critic that integrates EVT-based tail modeling into distributional RL for improved risk aversion .
- **Empirical Validation:** Demonstrate through experiments on benchmark environments that our method theoretically and practically reduces variance in risk metrics and achieves superior risk-averse performance.



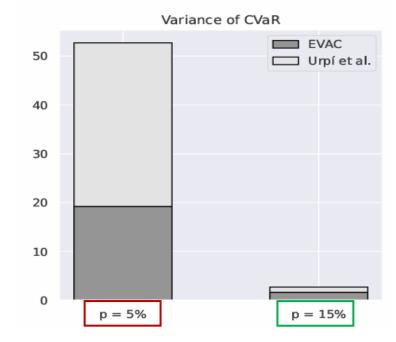
The Challenge of Modeling Extreme Risks

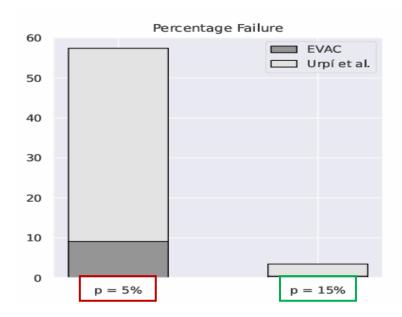
Setup

- For example, in Mujoco HalfCheetah environments, we simulate rare risk by applying a penalty via a Bernoulli variable
- Two risk levels when velocity of agent exceeds threshold:
 - 15% Penalty: Moderate rare risk
 - 5% Penalty: Extreme rare risk
- Evaluation via:
- **Empirical risk aversion** (Percentage Failure how many times does agent go to unsafe states)
 - Emprical CVaR (conditional value at risk) variance

Conclusion

 Accurate tail modeling is critical; EVAC reduces variance and enhances risk-sensitive policy convergence





^{*} Núria Armengol Urpí, Sebastian Curi, and Andreas Krause. Risk-averse offline reinforcement learning. In Proc. International Conference on Learning Representations (ICLR), May 2021.

Modeling the Tail Distribution

Pickands-Balkema-de Haan Theorem:

- Approximates the conditional excess distribution above a high threshold using the Generalized Pareto Distribution $(H_{\xi,\sigma}(x))$

(Pickands-Balkema-de Haan Theorem) Pickands III (1975) Let $X_1 \cdots X_n$ be a sequence of IID random variables with distribution function (CDF) given by F whose limiting behavior approaches the GEV distribution. Let $F_u(x) = P(X - u \le x | X > u)$ be the conditional excess distribution. Then, $\lim_{u \to \infty} F_u(x) \xrightarrow{D} H_{\xi,\sigma}(x),$

Key Idea:

- For values above a high threshold u, the conditional excess (i.e., the amount by which values exceed u) converges in distribution to a Generalized Pareto Distribution (GPD).

Tail Construction Process:

- **Threshold Selection:** Choose u (or a quantile level η) that partitions the distribution into a non-tail region and a tail region.
- **Parameter Estimation:** Represent excess values $(X u \mid X > u)$ using the GPD with parameters ξ (shape) and σ (scale). Fit the GPD to the observed excesses (via maximum likelihood or other methods) to obtain robust estimates of the tail behavior.

Benefits:

– Provides an efficient, parameterized model of extreme events that reduces variance in risk measures (e.g., CVaR) and supports more robust risk-averse policy learning.

Extreme Valued Actor Critic

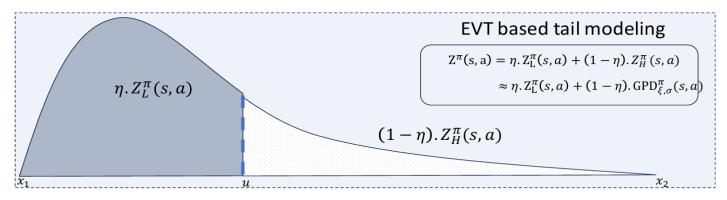
Decomposed Critic Architecture

Non-Tail Region:

• Quantile-based modeling (e.g., standard quantile regression) for values below a chosen threshold (η) .

Tail Region:

- Parameterized by a Generalized Pareto Distribution (GPD) for excess values above the threshold.
- GPD parameters (ξ, σ) updated via maximum likelihood estimation to capture rare, extreme events accurately.



Convergence Guarantee

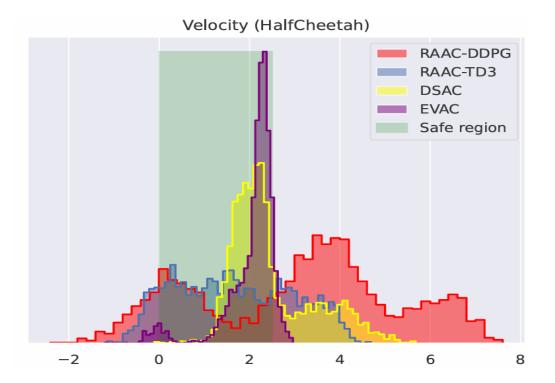
We prove that the critic modeling above under a fixed policy is a contraction

Integration with Actor-Critic

We optimize the actor using a risk measure (e.g., CVaR) derived from the refined (tail + non-tail) distribution.

Variance Reduction in quantile regression estimate of the tail region

Experiments



Algorithm	Percentage Failure	Cumulative Reward	CVaR
RAAC-DDPG	16.55 ± 4.43	$637.81 \pm\ 319.78$	135.18 ± 13.02
RAAC-TD3	41.3 ± 16.6	836.8 ± 195.85	129.81 ± 38.75
D-SAC	30.04 ± 22.26	1356.05 ± 269.63	149.76 ± 27.38
EVAC	$\boldsymbol{2.87\pm1.3}$	1502.46 ± 94.25	156.71 ± 11.07

Rare Risk Setup (HalfCheetah):

- Penalize the agent whenever its velocity exceeds a threshold (e.g., 2.5).
- Penalty is triggered with a small probability (p=5%), simulating extreme rare events.
- Safe region is velocity < 2.5

Rare Risk Setup (Navigation with rare obstacles):

Penalize the agent whenever it enters the red circles.

• Penalty is triggered with a small probability (p=5%), simulating extreme rare events

