Optimization with Access To Auxiliary Information

El Mahdi Chayti ¹ Sai Praneeth Karimireddy ²

¹Swiss Federal Technology Institute of Lausanne

²University of Southern California

March 31, 2025

Introduction

We are interested in the following problem:

$$\min_{m{x} \in \mathbb{R}^d} f(m{x}) := \mathbb{E}_{\xi_f} ig[f(m{x}; \xi_f) ig] ext{ given } h(m{x}) := \mathbb{E}_{\xi_f} ig[h(m{x}; \xi_h) ig]$$

Introduction

We are interested in the following problem:

$$\min_{m{x} \in \mathbb{R}^d} f(m{x}) := \mathbb{E}_{\xi_f} ig[f(m{x}; \xi_f) ig] ext{ given } h(m{x}) := \mathbb{E}_{\xi_f} ig[h(m{x}; \xi_h) ig]$$

Question:

How can we leverage an auxiliary h(x) to speed up the optimization of our target loss function f(x)?

The helper *h* can be much "cheaper": cheap, more accessible, ...

The helper h can be much "cheaper": cheap, more accessible, ...

we can have multiple helpers: h_1, \dots, h_n .

3/13

The helper *h* can be much "cheaper": cheap, more accessible, ...

we can have multiple helpers: h_1, \dots, h_n .

The helper *h* can be much "cheaper": cheap, more accessible, ...

we can have multiple helpers: h_1, \dots, h_n .

Examples:

• Federated Learning: $f \leftarrow$ average, $h_i \leftarrow$ {clients}.

The helper *h* can be much "cheaper": cheap, more accessible, ...

we can have multiple helpers: h_1, \dots, h_n .

- Federated Learning: $f \leftarrow$ average, $h_i \leftarrow$ {clients}.
- Personalized Learning: $f \leftarrow \text{client}_0$, $h \leftarrow \{\text{other clients}\}$.

The helper *h* can be much "cheaper": cheap, more accessible, ...

we can have multiple helpers: h_1, \dots, h_n .

- Federated Learning: $f \leftarrow \text{average}, h_i \leftarrow \{\text{clients}\}.$
- Personalized Learning: $f \leftarrow \text{client}_0$, $h \leftarrow \{\text{other clients}\}$.
- Semi-supervised Learning: $f \leftarrow$ Labeled, $h \leftarrow$ unlabeled.

The helper *h* can be much "cheaper": cheap, more accessible, ...

we can have multiple helpers: h_1, \dots, h_n .

- Federated Learning: $f \leftarrow$ average, $h_i \leftarrow$ {clients}.
- Personalized Learning: $f \leftarrow \text{client}_0$, $h \leftarrow \{\text{other clients}\}$.
- Semi-supervised Learning: $f \leftarrow$ Labeled, $h \leftarrow$ unlabeled.
- Core-sets: $f \leftarrow$ large dataset, $h \leftarrow$ core-set.

We write f as

$$f(z) := \underbrace{h(z)}_{\text{cheap}} + \underbrace{f(z) - h(z)}_{\text{expensive}}.$$

We write f as

$$f(z) := \underbrace{h(z)}_{\text{cheap}} + \underbrace{f(z) - h(z)}_{\text{expensive}}.$$

Let x be the global state (slow) and y the local state (fast).

We write f as

$$f(z) := \underbrace{h(z)}_{\text{cheap}} + \underbrace{f(z) - h(z)}_{\text{expensive}}.$$

Let x be the global state (slow) and y the local state (fast).

Main idea: Linearize h around y and f - h around x.

We write f as

$$f(z) := \underbrace{h(z)}_{\text{cheap}} + \underbrace{f(z) - h(z)}_{\text{expensive}}.$$

Gradient: $\nabla h(\mathbf{y}) + \nabla f(\mathbf{x}) - \nabla h(\mathbf{x})$.

We write f as

$$f(z) := \underbrace{h(z)}_{\text{cheap}} + \underbrace{f(z) - h(z)}_{\text{expensive}}.$$

Gradient:
$$\nabla h(\mathbf{y}, \xi_h) + \mathbf{m}_{f-h}$$
 $\approx \nabla f(\mathbf{x}) - \nabla h(\mathbf{x})$.

We write f as

$$f(z) := \underbrace{h(z)}_{\text{cheap}} + \underbrace{f(z) - h(z)}_{\text{expensive}}.$$

Gradient:
$$\nabla h(\mathbf{y}, \xi_h) + \mathbf{m}_{f-h} \underset{\approx \nabla f(\mathbf{x}) - \nabla h(\mathbf{x})}{\mathbf{m}_{f-h}}$$
.

$$\mathsf{AuxMOM}: \, \boldsymbol{m}_{f-h} \leftarrow (1-a)\boldsymbol{m}_{f-h} + a\nabla(f-h)(\boldsymbol{x};\xi_{f-h})$$

All in all:

All in all:

1)
$$\mathbf{m}_{f-h} \leftarrow (1-a)\mathbf{m}_{f-h} + a\nabla(f-h)(\mathbf{x}; \xi_{f-h})$$

All in all:

1)
$$\mathbf{m}_{f-h} \leftarrow (1-a)\mathbf{m}_{f-h} + a\nabla(f-h)(\mathbf{x}; \xi_{f-h})$$

2) $\{ \boldsymbol{y} \leftarrow \boldsymbol{y} - \eta (\nabla h(\boldsymbol{y}, \xi_h) + \boldsymbol{m}_{f-h}) \}$ repeat K times.

All in all:

- 1) $\mathbf{m}_{f-h} \leftarrow (1-a)\mathbf{m}_{f-h} + a\nabla(f-h)(\mathbf{x}; \xi_{f-h})$
- 2) $\{ \boldsymbol{y} \leftarrow \boldsymbol{y} \eta(\nabla h(\boldsymbol{y}, \xi_h) + \boldsymbol{m}_{f-h}) \}$ repeat K times.
- 3) $\boldsymbol{x} \leftarrow \boldsymbol{y}$.

Theory

(Smoothness.)

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le L\|\mathbf{x} - \mathbf{y}\|_2$$
.

(Smoothness.)

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \leq L\|\mathbf{x} - \mathbf{y}\|_2$$
.

(Variance.) Unbiasedness + bounded variance

$$\mathbb{E}_{\zeta_J} \|\nabla J(\boldsymbol{x}; \zeta_J) - \nabla J(\boldsymbol{x})\|_2^2 \leq \sigma_J^2, J \in \{f, h, f - h\}.$$

(Smoothness.)

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \leq L\|\mathbf{x} - \mathbf{y}\|_2$$
.

(Variance.) Unbiasedness + bounded variance

$$\mathbb{E}_{\zeta_J} \|\nabla J(\boldsymbol{x}; \zeta_J) - \nabla J(\boldsymbol{x})\|_2^2 \leq \sigma_J^2, J \in \{f, h, f - h\}.$$

Hessian similarity. $\exists \delta \in [0, 2L]$ we have

$$\|\nabla^2 f(\mathbf{x}) - \nabla^2 h(\mathbf{x})\|_2 \leq \delta$$
.

Theory

AuxMOM iteration complexity:

To get $\mathbb{E}[\|\nabla f(\hat{\mathbf{x}})\|_2^2] \leq \varepsilon$, AuxMOM needs at most

$$\mathcal{O}\left(\frac{\delta F^0 \sigma_{f-h}^2}{\varepsilon^2} + \frac{\delta F^0}{\varepsilon} + \frac{\sigma_{f-h}^2}{\varepsilon}\right)$$

(stochastic) gradient calls of f.

To get $\mathbb{E}[\|\nabla f(\hat{\mathbf{x}})\|_2^2] \leq \varepsilon$, AuxMOM needs at most

$$\mathcal{O}\left(\frac{\delta F^0 \sigma_{f-h}^2}{\varepsilon^2} + \frac{\delta F^0}{\varepsilon} + \frac{\sigma_{f-h}^2}{\varepsilon}\right)$$

(stochastic) gradient calls of f.

Gain: Compare to $\mathcal{O}\left(\frac{LF^0\sigma_f^2}{\varepsilon^2} + \frac{LF^0}{\varepsilon}\right)$

To get $\mathbb{E}[\|\nabla f(\hat{\mathbf{x}})\|_2^2] \leq \varepsilon$, AuxMOM needs at most

$$\mathcal{O}\left(\frac{\delta F^0 \sigma_{f-h}^2}{\varepsilon^2} + \frac{\delta F^0}{\varepsilon} + \frac{\sigma_{f-h}^2}{\varepsilon}\right)$$

(stochastic) gradient calls of f.

To get $\mathbb{E}[\|\nabla f(\hat{\mathbf{x}})\|_2^2] \leq \varepsilon$, AuxMOM needs at most

$$\mathcal{O}\left(\frac{\delta F^0 \sigma_{f-h}^2}{\varepsilon^2} + \frac{\delta F^0}{\varepsilon} + \frac{\sigma_{f-h}^2}{\varepsilon}\right)$$

(stochastic) gradient calls of f.

Gain: we replaced L by δ and σ_f^2 by σ_{f-h}^2

To get $\mathbb{E}[\|\nabla f(\hat{x})\|_2^2] \leq \varepsilon$, AuxMOM needs at most

$$\mathcal{O}\left(\frac{\delta F^0 \sigma_{f-h}^2}{\varepsilon^2} + \frac{\delta F^0}{\varepsilon} + \frac{\sigma_{f-h}^2}{\varepsilon}\right)$$

(stochastic) gradient calls of f.

Gain: we replaced L by δ and σ_f^2 by σ_{f-h}^2

Small dissimilarity or positive correlation \implies gain.

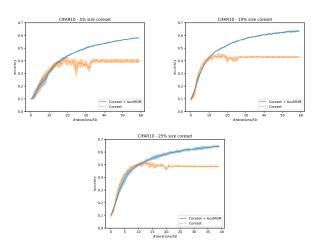
To get $\mathbb{E}[\|\nabla f(\hat{\mathbf{x}})\|_2^2] \leq \varepsilon$, AuxMOM needs at most

$$\mathcal{O}\left(\frac{\delta F^0 \sigma_{f-h}^2}{\varepsilon^2} + \frac{\delta F^0}{\varepsilon} + \frac{\sigma_{f-h}^2}{\varepsilon}\right)$$

(stochastic) gradient calls of f.

What is the catch? $K = \mathcal{O}\left(\frac{\sigma_h^2}{\varepsilon} + 1_{\delta \neq 0} \frac{L}{\delta} + 1\right)$ inner steps of the helper h.

Core-sets



Conclusion

- Introduced the framework of optimization with access to auxiliary information
- Showed how it can improve optimization without using a helper.
- The framework works on simple problems in practice.