Learning to Discretize Denoising Diffusion (LD3) ODEs

Vinh Tong

and

Dung Hoang, Anji Liu, Guy Van den Broeck, Mathias Niepert

Flux 70 default steps
7 seconds

Prompt: 'A cloud formation in the sky spelling "Hope" in soft, fluffy letters'

Flux 30 default steps
3 seconds

Flux 70 default steps
7 seconds

Prompt: 'A cloud formation in the sky spelling "Hope" in soft, fluffy letters'

Flux 30 default steps
3 seconds

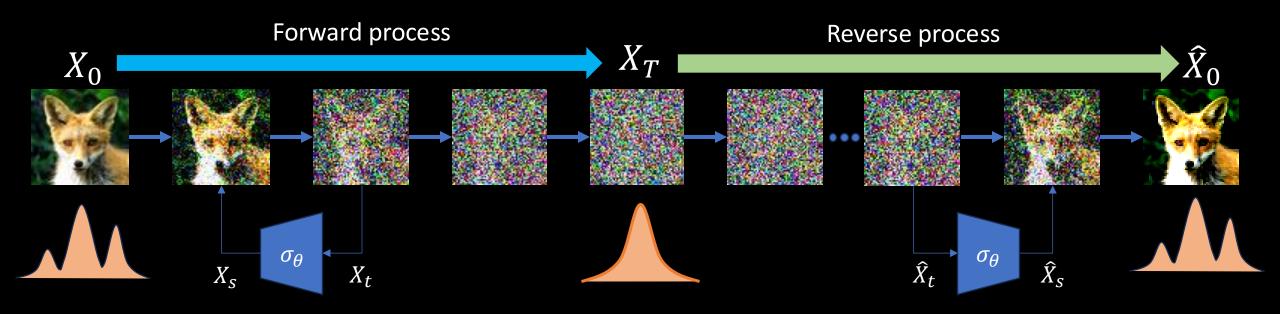
Flux 70 default steps
7 seconds

Flux 30 optimized steps 3 seconds

Prompt: 'A cloud formation in the sky spelling "Hope" in soft, fluffy letters'

How Diffusion Models Work

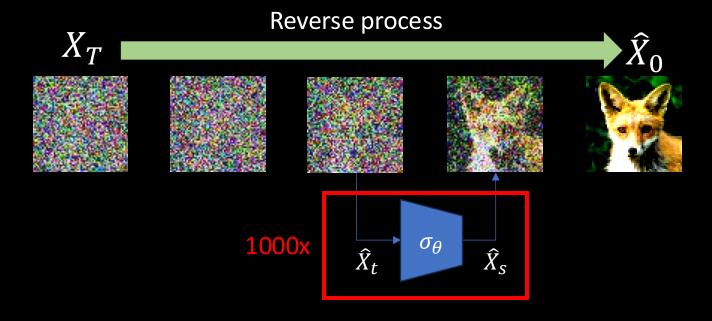
"Diffusion models transform noise into images by learning to reverse a step-by-step noising process."



When $t \rightarrow s$:

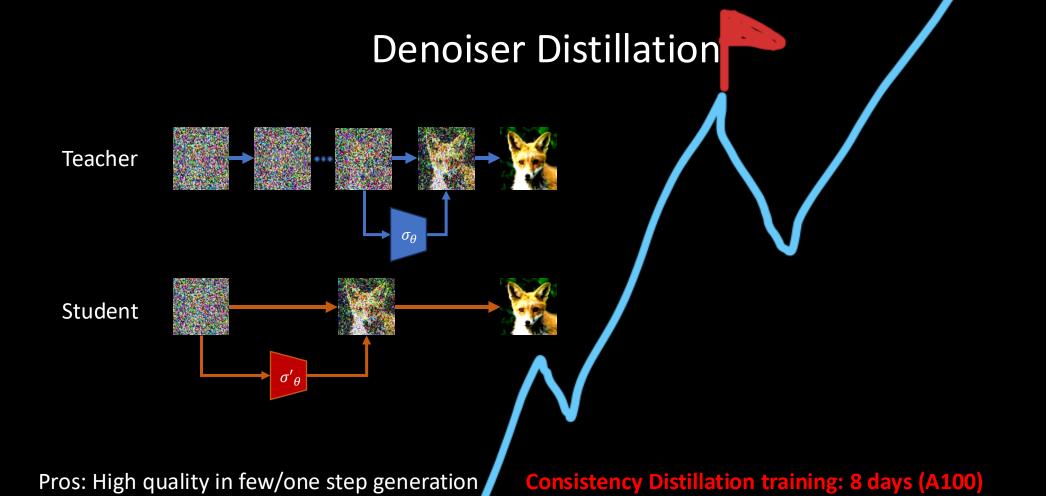
- Training = Learning an ODE
- **Sampling** = Solving the ODE from a prior

Diffusion Models are slow



The denoiser is called multiple times

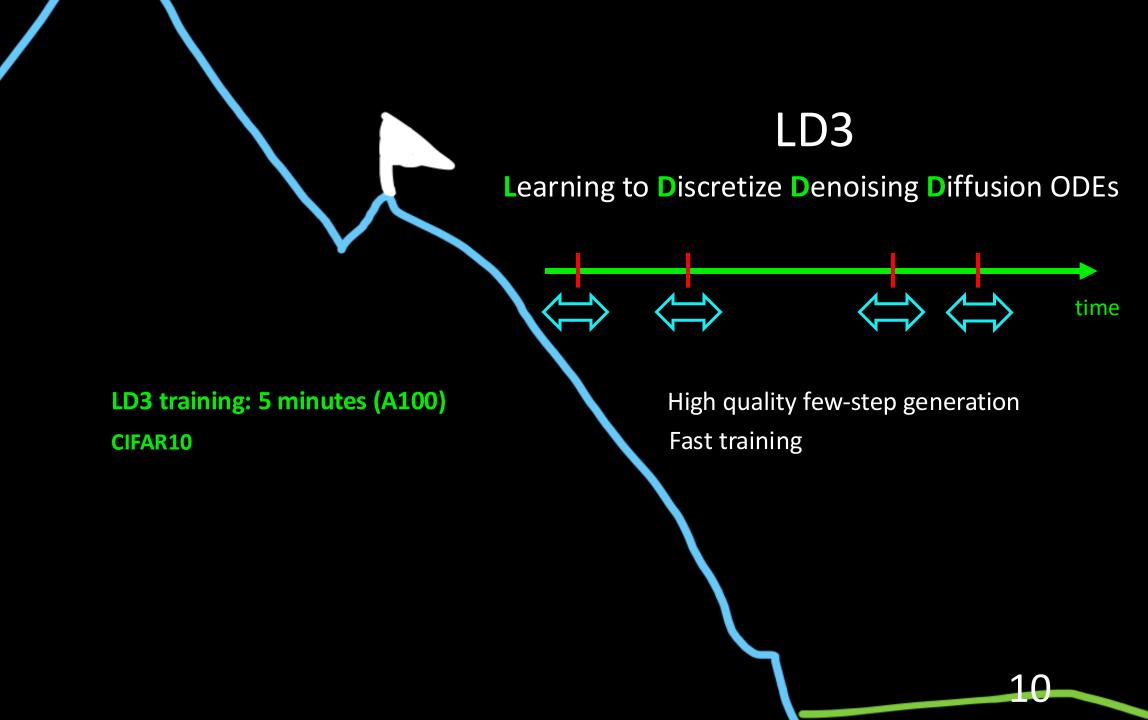
Fewer sampling steps while preserving quality

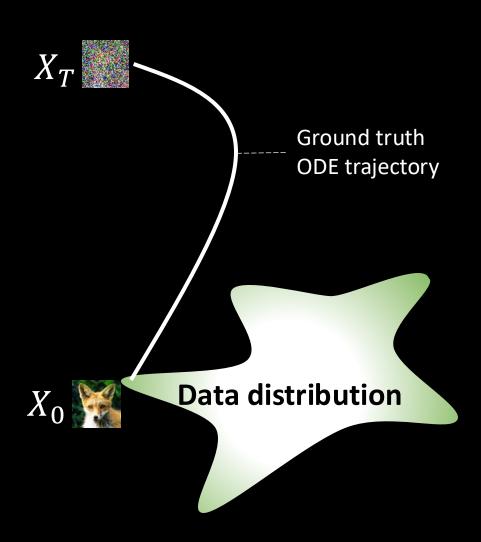


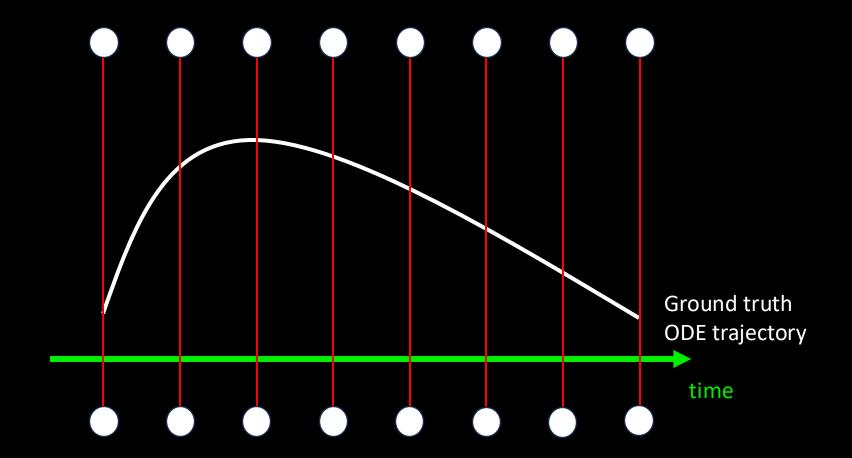
CIFAR10

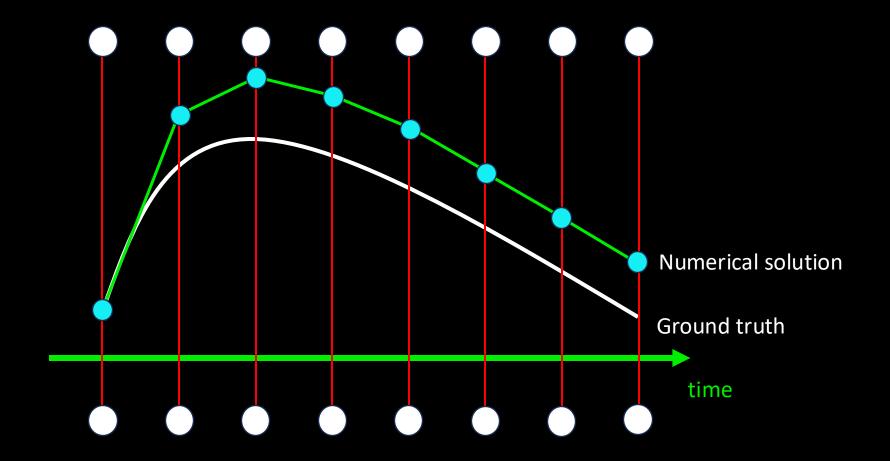
Cons: Costly training

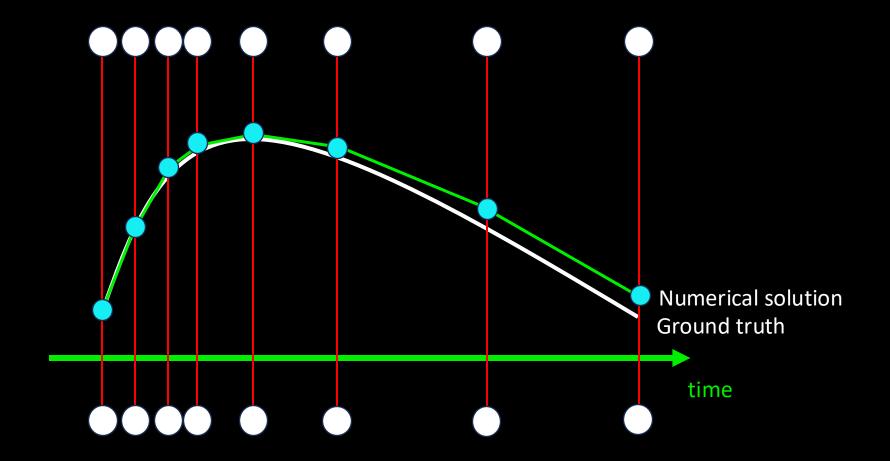
9











LD3 - Overview

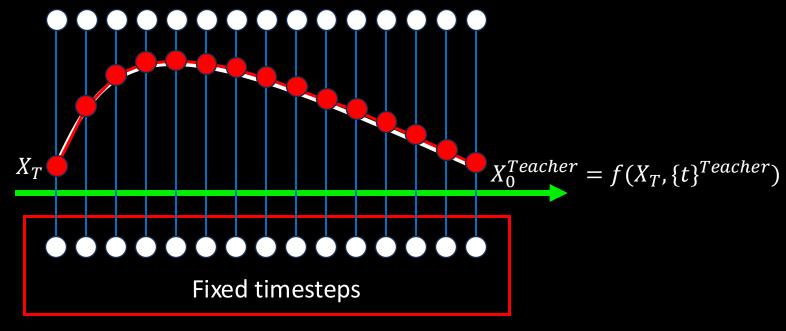
LD3: A teacher-student approach

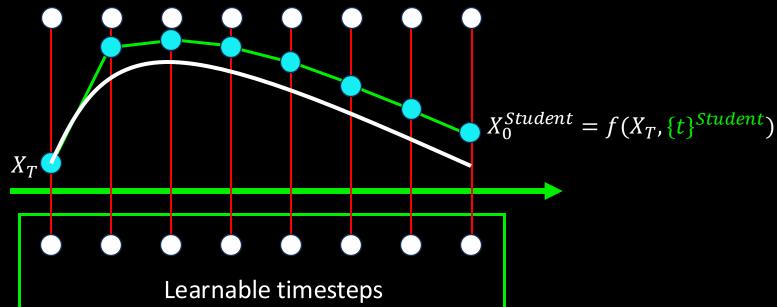
- Teacher: Many-step solver
- Student: Few-step solver

Use the same denoiser network!

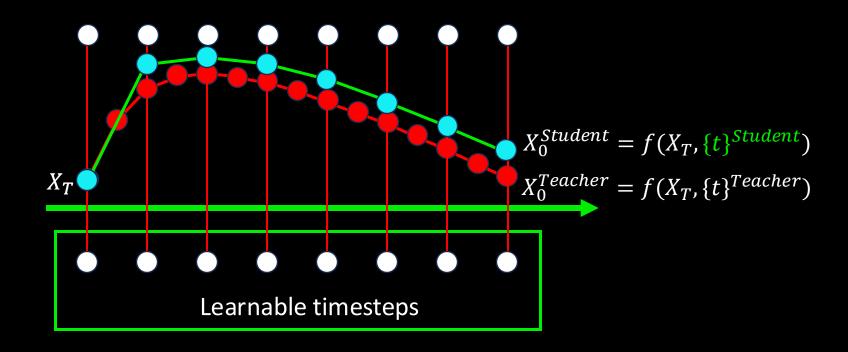
 Objective: Learn discretization of timesteps to align student with teacher output

Teacher





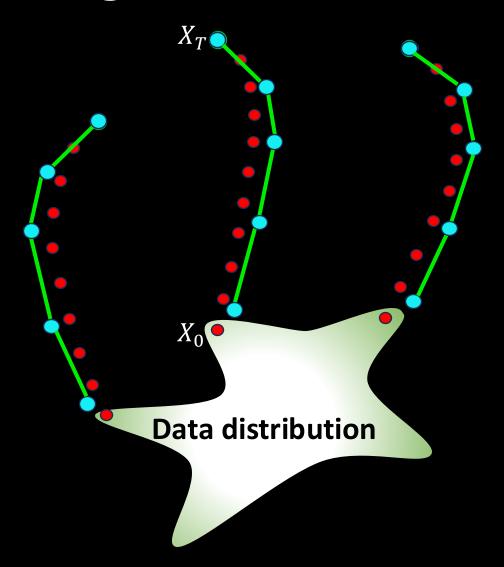
LD3 Minimizes Global Discretization Error



Objective: Align trajectory endpoints via backpropagating gradients for the timesteps through the student ODE solver

Underfitting risk: only a few parameters are optimized

Hard Teacher Forcing



Soft Teacher Forcing X_0 **Data distribution** Soft Teacher Forcing X_0 **Data distribution**

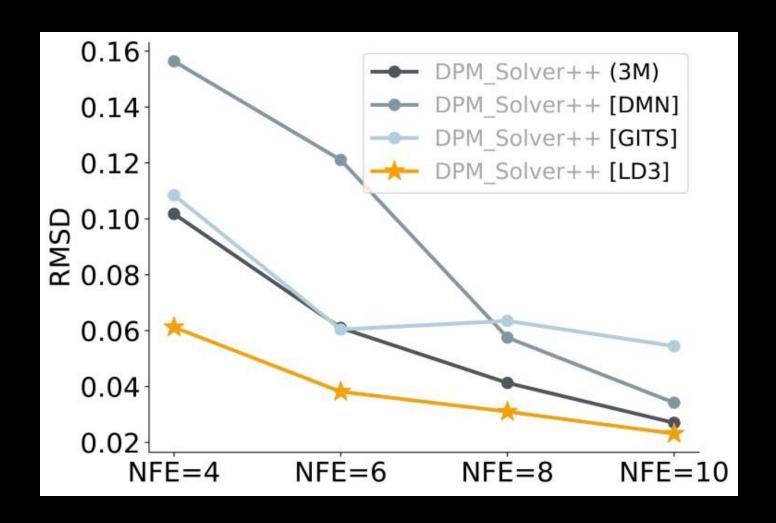
Experimental Results

Image Synthesis FID score (\psi lower is better)

CIFAR10 (pixel space) – Uni_PC							
Method	NFE=4	NFE=6	NFE=8	NFE=10			
3M	43.9	13.1	4.4	3.2			
GITS	25.3	11.2	5.7	3.7			
DMN	26.4	8.1	5.9	2.5			
LD3	13.7	5.9	3.4	2.9			

ImageNet-256 (latent space) – Uni_PC						
Method	NFE=4	NFE=5	NFE=6	NFE=7		
3M	20.0	8.5	5.9	5.2		
GITS	54.9	34.9	14.6	9.0		
DMN	16.7	8.0	7.5	7.8		
LD3	9.9	5.0	4.5	4.3		

LD3 Is Closer to The Teacher Solver

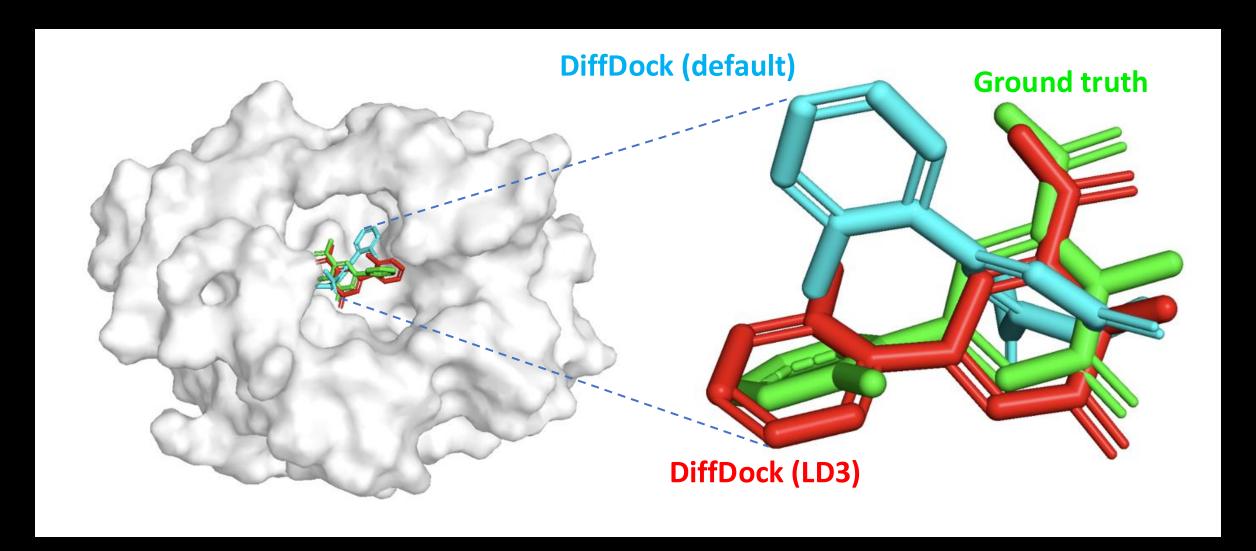


"A biomechanical dragon, part machine, part organic, soaring above a dystopian wasteland, its wings made of pure energy."

Default discretization (30 steps)

LD3 optimized discretization (30 steps) 26

Beyond Image Generation



Conclusion

LD3: A lightweight framework

- Reduces computational cost in sampling from pre-trained DPMs
- Learns time discretization for ODE-based sampling
- Minimal training overhead
- High-quality output with few-step sampling

Thanks to the Collaborators

Dung Hoang

Anji Liu

Guy Van den Broeck

Mathias Niepert

