Homomorphism Expressivity of Spectral Invariant Graph Neural Networks

```
Jingchu Gai <sup>1</sup> Yiheng Du <sup>1</sup> Bohang Zhang<sup>1</sup> Haggai Maron <sup>2,3</sup>
Liwei Wang <sup>1</sup>

<sup>1</sup>Peking University <sup>2</sup>Technion <sup>3</sup>NVIDIA Research
gaijingchu@stu.pku.edu.cn, zhangbohang@pku.edu.cn,
duyiheng@stu.pku.edu.cn
hmaron@nvidia.com, wanglw@pku.edu.cn
```

April 18, 2025

Overview

- Background
- Expressive Power of Spectral GNNs
- 3 Homomorphism Expressivity of Spectral GNN
- 4 Experiment and Conclusion

Outline

- Background
- Expressive Power of Spectral GNNs
- 3 Homomorphism Expressivity of Spectral GNN
- 4 Experiment and Conclusion

Background: Graph Spectral

• Eigen-decomposition of graph *G*:

$$\mathbf{M}_{G} = \sum_{k=1}^{k} \lambda_{M,k}^{G} \mathbf{P}_{M,k}^{G}, \quad \mathbf{M}_{G} \in \{\mathbf{A}, \mathbf{L}, \widehat{\mathbf{A}}, \widehat{\mathbf{L}}\}$$

M can be either a standard or normalized adjacency matrix, or a standard or normalized Laplacian matrix.

• Spectral Information: eigenvalue $\{\lambda_{M,k}^G\}_{k=1}^m$ and projection matrix to eigenspaces $\{\mathbf{P}_{M,k}^G\}_{k=1}^m$.

Background: Application of Graph Spectral

- Theoretical and graph theory: How much information of graph does spectral information
 - Widely known conjecture [9, 6]: If two graphs are cospectral (have same eigenvalues), are they isomorphic?
- Application and machine learning:
 - Spectral encodes information regarding connectivity.
 - Related to practical applications such as molecular property prediction.
 - Adopted in the design of neural networks

Background: Graph Neural Network

 Graph neural networks (GNNs) have become the dominant approach for learning graph-structured data.

 To develop GNNs that more effectively encode spectral information, recent research in graph learning has incorporated spectral information into their design, leading to what we call spectral GNNs.

Questions and Motivations

- GNN based on spectral:
 - Basisnet [8]
 - SPE [7]
 - Spectral Invariant GNN (Spectral-IGN) [10]
 - GCN, ChebNet
- Questions:
 - Incorporating spectral information into the design of GNNs increases computational cost. Does this enhance the expressive power of GNNs?
 - What is the relationship between the expressive power of GNNs based on spectral information and other GNNs?
 - How do spectral GNNs compare to other mainstream GNN architectures?
 - What are the key properties of spectral GNNs (e.g., subgraph counting capabilities)?

Outline

- Background
- Expressive Power of Spectral GNNs
- 3 Homomorphism Expressivity of Spectral GNN
- Experiment and Conclusion

Spectral Invariant GNN

 Spectral Invariant GNN: A variation of 1-WL that incorporates spectral information, also the most widely studied spectral-based GNN.

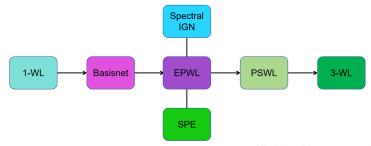
$$\begin{split} \chi_G^{\mathrm{Spec},(d+1)}(u) &= \mathsf{hash}\left(\chi_G^{\mathrm{Spec},(d)}(u), \{\!\!\{ (\chi_G^{\mathrm{Spec},(d)}(v), \mathcal{P}(u,v)) | v \in V_G \}\!\!\} \right) \quad \text{for } u \in V_G, d \in N_+, \\ \mathcal{P}(u,v) &:= \{\!\!\{ (\lambda, \textbf{\textit{P}}_{\lambda}(u,v)) | \lambda \in \Lambda \}\!\!\} \quad \text{for } u,v \in V_G. \end{split}$$

 $\mathbf{A} = \sum_{\lambda} \mathbf{P}_{\lambda}$ is the eigen-decomposition of adjacency matrix \mathbf{A} .

Previous Result: Expressive Power of Spectral GNNs

Theorem

- Spectral IGN is as expressive as EPWL in distinguishing non-isomorphic graphs.
- SPE is as expressive as EPWL.
- Basisnet is strictly weaker than EPWL.
- EPWL is strictly stronger than 1-WL, and is strictly weaker than PSWL. Thus. EPWL is strictly weaker than 3-WL.



Jingchu Gai ¹

Result and Limitation

Conclusion:

- A fine-grained expressiveness hierarchy among different architectures.
- Spectral IGN essentially unifies all prior spectral invariant architectures, in that they are either strictly less expressive or equivalent to Spectral IGN.

Limitation:

- How to compare Spectral IGN with other main stream GNNs?
- Other properties of Spectral IGN? (e.g. subgraph count)
- Open problem of [2]—expressive power of Spectral IGN with finite iterations:

For any d, is the expressive power of $\chi_G^{\mathrm{Spec},(d+1)}$ strictly stronger than $\chi_G^{\mathrm{Spec},(d)}$? (i.e. does the iteration of spectral IGN converges in finite number of iterations?)

A more fine-grained analysis is required!

Outline

- Background
- 2 Expressive Power of Spectral GNNs
- 3 Homomorphism Expressivity of Spectral GNN
- 4 Experiment and Conclusion

Homomorphic Expressivity of Spectral GNN

BEYOND WEISFEILER-LEHMAN: A QUANTITATIVE FRAMEWORK FOR GNN EXPRESSIVENESS

```
Bohang Zhang^{1*\dagger} Jingchu Gai^{1*} Yiheng Du^1 Qiwei Ye^2 Di He^1 Liwei Wang^1Peking University ^2Beijing Academy of Artificial Intelligence zhangbohang@pku.edu.cn, {gaijingchu,duyiheng}@stu.pku.edu.cn qwye@baai.ac.cn, {dihe,wanglw}@pku.edu.cn
```

• Introduce tools of discrete geometry and algebraic graph theory to the analysis of GNNs' expressive power.

Homomorphic Expressivity of GNN

Definition (Homomorphism)

Given two graphs $F=(V_F,E_F)$ and $G=(V_G,E_G)$, a homomorphism from F to G is a mapping $f\colon V_F\to V_G$ that preserves edges, i.e. $\{f(u),f(v)\}\in E_G$ for all $\{u,v\}\in E_F$.

Definition (Homomorphic Expressivity)

The homomorphism expressivity of a GNN model M, denoted as \mathcal{F}^M , is a family of graphs satisfying the following conditions:

- For any two graphs G, H, $\chi_G^M(G) = \chi_H^M(H)$ iff hom(F, G) = hom(F, H) for all $F \in \mathcal{F}^M$;
- ② \mathcal{F}^M is maximum, i.e., for any graph $F \notin \mathcal{F}^M$, there exists a pair graphs G, H such that $\chi_G^M(G) = \chi_H^M(H)$ and $hom(F,G) \neq hom(F,H)$.

4 □ b 4 □ b ·

Homomorphic Expressivity of Main Stream GNNs

(a) Illustration of NED

(b) Endpoint-shared/strong/almost-strong/general NED

Theorem

The homomorphism expressivity of main stream GNNs are presented as follows:

- **MPNN**: $\mathcal{F}^{MP} = \{F : F \text{ is a forest}\};$
- **Subgraph GNN**: $\mathcal{F}^{Sub} = \{F : F \text{ has an endpoint-shared NED}\};$
- **Local 2-GNN**: $\mathcal{F}^{L} = \{F : F \text{ has a strong NED}\};$
- **Local 2-FGNN**: $\mathcal{F}^{\mathsf{LF}} = \{F : F \text{ has a almost-strong NED}\};$
- **2-FGNN**: $\mathcal{F}^{LF} = \{F : F \text{ is a subgraph a series-parallel graph}\}.$

Homomorphic Expressivity of Spectral GNN

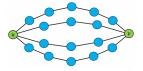
Definition (**Parallel Edge**)

A graph G is called a parallel edge if there exist two different vertices $u, v \in V_G$ such that the edge set E_G can be partitioned into a sequence of simple paths P_1, \ldots, P_m , where all paths share endpoints (u, v). We refer to (u, v) as the endpoints of G.

Definition (**Parallel Tree**)

A graph F is called a parallel tree if there exists a tree T such that F can be obtained from T by replacing each edge $(u, v) \in E_T$ with a parallel edge that has endpoints (u, v). We refer to T as the parallel tree skeleton of the graph F. Given a parallel tree F, the parallel tree depth of F is defined as the minimum depth of any parallel tree skeleton of F.

Homomorphic Expressivity of Spectral GNN



(a) A parallel edge with endpoints (u, v)

(b) An example of parallel tree and its tree skeleton

Theorem (Homomorphism Expressivity)

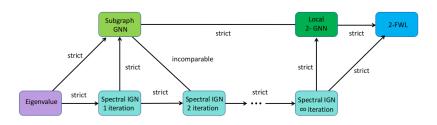
For any $d \in \mathbb{N}$, the homomorphism expressivity of spectral invariant GNNs with d iterations exists and can be characterized as follows:

$$\mathcal{F}^{\mathsf{Spec},(d)} = \{ F \mid F \text{ has parallel tree depth at most } d \}.$$

Theorem (Subgraph Counting Power)

 $\forall d \in \mathbb{N}$, spectral IGNs with d iterations can subgraph count graph F iff all the homomorphic images of F lies in $\mathcal{F}^{\text{Spec},(d)}$.

Implication of Homomorphic Expressivity



- **Hierarchy:** A hierarchy of spectral IGN and other mainstream GNNs.
- **Subgraph Count:** Extending the results of previous works [3, 1, 5].
 - Spectral invariant GNNs can subgraph-count all cycles up to 7 vertices within 2 iterations.
 - The above upper bound is tight: spectral invariant GNNs with only 1 iteration (i.e., Fürer's weak spectral invariant) cannot subgraph-count 7-cycle.
 - Spectral invariant GNNs with 1 iteration suffice to subgraph-count all cycles up to 6 vertices.

Extension: Higher Order Spectral

- Higher Order Spectral GNN:
 - The homomorphism expressivity of k-order spectral invariant GNNs is the set of all graphs that admit a parallel k-order strong NED.
- Higher Order Symmetric Power:

Theorem

The Local 2k-GNN can encode the symmetric k-th power. Specifically, for given graphs G and H, if G and H have the same representation under Local 2k-GNN, then $G^{\{k\}}$ and $H^{\{k\}}$ have the same representation under the spectral invariant GNNs.

Outline

- Background
- Expressive Power of Spectral GNNs
- 3 Homomorphism Expressivity of Spectral GNN
- 4 Experiment and Conclusion

Experiment

Table 1: Experimental results on homomorphism counting, real-world tasks and substructure count.

Task	Homomorphism Count					ZINC		Substructure Count					
Model	\square	\bowtie	\bigcirc	\bigcirc	\boxtimes	Subset	Full	\triangle		\bigcirc	\bigcirc	\square	\bigcirc
MPNN	.300	.261	.276	.233	.341	0.138 ± 0.006	$.030 \pm .002$.358	.208	.188	.146	.261	.205
Spectral Invariant GNN	.045	.046	.053	.048	.303	$.103 \pm .006$	$.028\pm.003$.072	.072	.089	.089	.060	.099
Subgraph GNN	.011	.013	.010	.015	.260	0.110 ± 0.007	$.028\pm.002$.010	.020	.024	.046	.007	.027
Local 2-GNN	.008	.006	.008	.008	.112	$.069 \pm .001$	$.024\pm.002$.008	.011	.017	.034	.007	.016

- Homomorphism Count. GNN models perform well in homomorphism counting when the substructure is captured by the model's homomorphism expressivity.
- Subgraph Count. GNN models perform well in subgraph counting when the substructure's homomorphic images are within the model's homomorphism expressivity.
- Real-World Task. We evaluate our GNN models on the ZINC-subset and ZINC-full datasets [4].

References I

- [1] Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. On weisfeiler-leman invariance: Subgraph counts and related graph properties. *Journal of Computer and System Sciences*, 113:42–59, 2020.
- [2] Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. On a hierarchy of spectral invariants for graphs. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2024.
- [3] Dragos Cvetkovic, Dragoš M Cvetković, Peter Rowlinson, and Slobodan Simic. *Eigenspaces of graphs*. Cambridge University Press, 1997.

References II

- [4] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.
- [5] Martin Fürer. On the combinatorial power of the weisfeiler-lehman algorithm. In *International Conference on Algorithms and Complexity*, pages 260–271. Springer, 2017.
- [6] Willem H Haemers and Edward Spence. Enumeration of cospectral graphs. *European Journal of Combinatorics*, 25(2):199–211, 2004.
- [7] Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and Pan Li. On the stability of expressive positional encodings for graph neural networks. *arXiv preprint arXiv:2310.02579*, 2023.

References III

- [8] Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learning. *arXiv preprint arXiv:2202.13013*, 2022.
- [9] Edwin R Van Dam and Willem H Haemers. Which graphs are determined by their spectrum? *Linear Algebra and its applications*, 373:241–272, 2003.
- [10] Bohang Zhang, Lingxiao Zhao, and Haggai Maron. On the expressive power of spectral invariant graph neural networks. *arXiv preprint* arXiv:2406.04336, 2024.