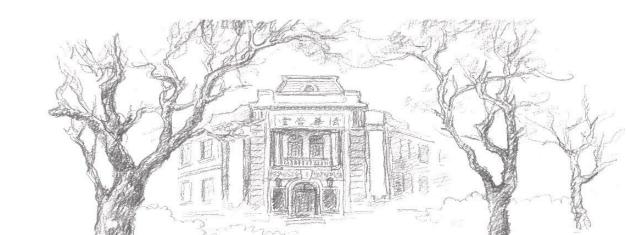
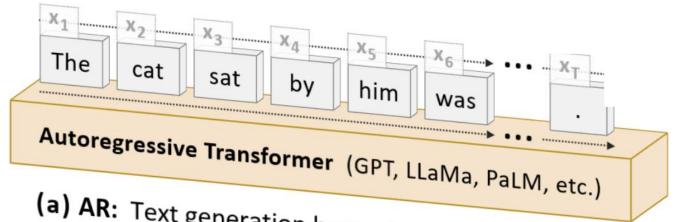


Toward Guidance-Free AR Visual Generation via Condition Contrastive Alignment

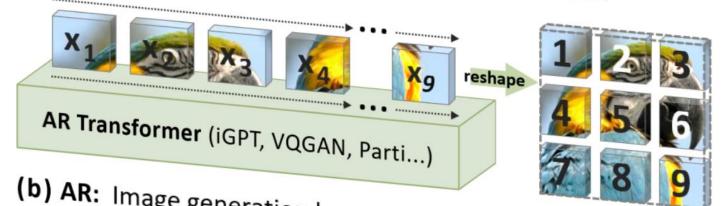
Huayu Chen, Hang Su, Peize Sun, Jun Zhu



AR Visual Generation



(a) AR: Text generation by next-token prediction



(b) AR: Image generation by next-image-token prediction

AR guided sampling (CFG)

Vanilla Decoding
$$\ell^c$$

Classifier-Free Guidance

$$\ell^{\text{sample}} = \ell^c + s(\ell^c - \ell^u)$$

AR guided sampling (CFG)

Poor Image-Condition Alignment

Vanilla Decoding

 ℓ^c

LlamaGen (w/o Guidance)

IS=64.7

Classifier-Free Guidance

$$\ell^{\text{sample}} = \ell^c + s(\ell^c - \ell^u)$$

AR guided sampling (CFG)

Poor Image-Condition Alignment

Vanilla Decoding

 ℓ^{c}

LlamaGen (w/o Guidance)

IS=64.7

Classifier-Free Guidance

$$\ell^{\text{sample}} = \ell^c + s(\ell^c - \ell^u)$$

LlamaGen (w/ CFG)
IS=404.0

Problems

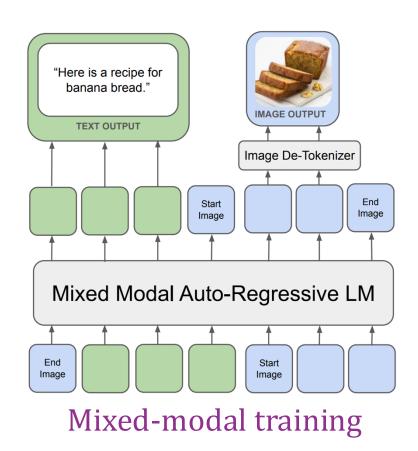
Is Classifier Free Guidance good enough for us?

Problems

What's the ultimate goal for studying Visual AR?

Unified Mixed-Modal Modeling:

- Unified Representation.
- Unified Algorithm.
- Unified Decoding.



Problems

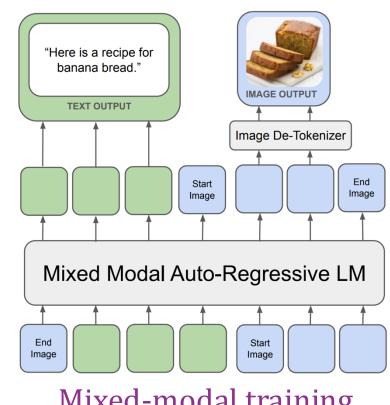
What's the ultimate goal for studying Visual AR?

Unified Mixed-Modal Modeling:

- Unified Representation.
- Unified Algorithm.
- Unified Decoding.

CFG causes inconsistencies between language & vision

- Training → Randomly masking text conditions in loss
- Sampling → Inconsistent Decoding System + 2x inference times

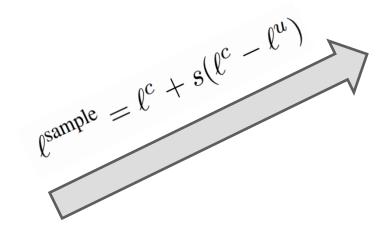


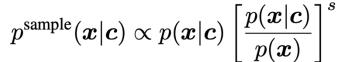
Mixed-modal training

Condition Contrastive Alignment

$$p(\boldsymbol{x}|\boldsymbol{c})$$

LlamaGen (w/o Guidance) IS=64.7



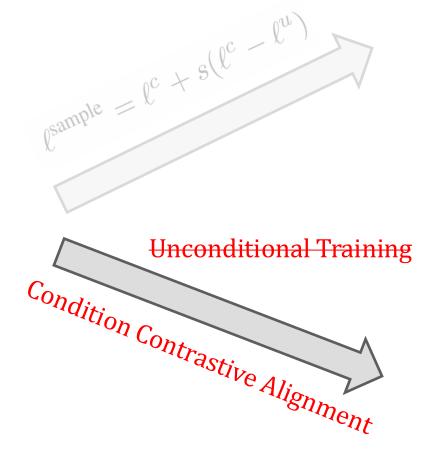


LlamaGen (w/ CFG)
IS=404.0

Condition Contrastive Alignment

$$p^{ ext{sample}}(m{x}|m{c}) \propto p(m{x}|m{c}) \left[rac{p(m{x}|m{c})}{p(m{x})}
ight]^s$$

LlamaGen (w/o Guidance) IS=64.7

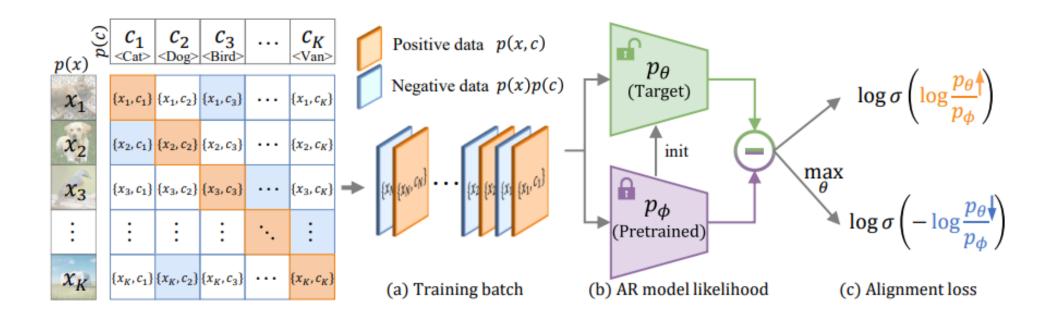


LlamaGen (w/ CFG)

IS=404.0

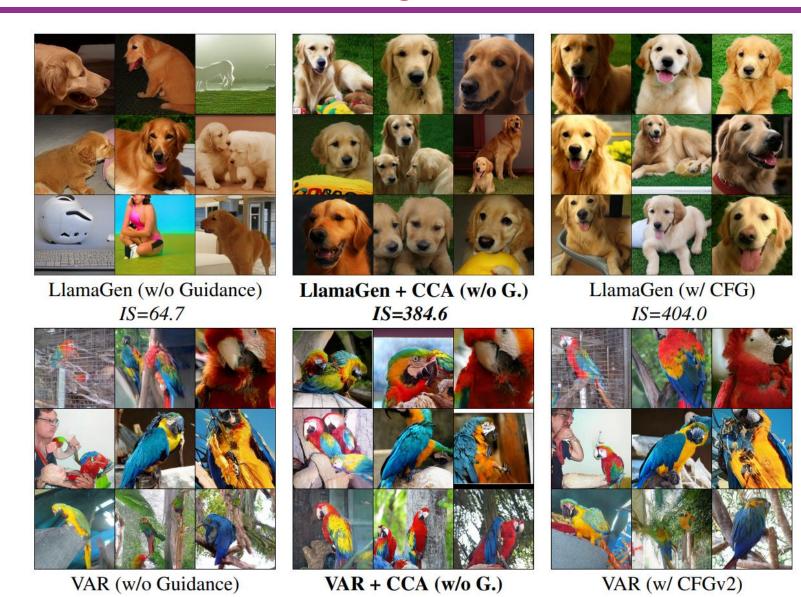
LlamaGen + CCA (w/o G.) IS=384.6

Implementation



$$\mathcal{L}_{\theta}^{\text{CCA}}(\boldsymbol{x}_{k}, \boldsymbol{c}_{k}, \boldsymbol{c}_{k}^{\text{neg}}) = -\underbrace{\log \sigma \left[\beta \log \frac{p_{\theta}^{\text{sample}}(\boldsymbol{x}_{k}|\boldsymbol{c}_{k})}{p_{\phi}(\boldsymbol{x}_{k}|\boldsymbol{c}_{k})}\right]}_{\text{relative likelihood for positive conditions}} \uparrow -\lambda \underbrace{\log \sigma \left[-\beta \log \frac{p_{\theta}^{\text{sample}}(\boldsymbol{x}_{k}|\boldsymbol{c}_{k}^{\text{neg}})}{p_{\phi}(\boldsymbol{x}_{k}|\boldsymbol{c}_{k}^{\text{neg}})}\right]}_{\text{relative likelihood for negative conditions}}$$

Primary Result



IS=350.4

IS = 390.8

IS=154.3

$$p^{\text{sample}}(\boldsymbol{x}|\boldsymbol{c}) \longrightarrow p^{\text{sample}}(\boldsymbol{x}|\boldsymbol{c}) \propto p(\boldsymbol{x}|\boldsymbol{c}) \left[\frac{p(\boldsymbol{x}|\boldsymbol{c})}{p(\boldsymbol{x})}\right]^{s}$$

Cannot be learned due to "Lack of data"

$$p^{ ext{sample}}(m{x}|m{c}) \propto p(m{x}|m{c}) \left[rac{p(m{x}|m{c})}{p(m{x})}
ight]^s$$

Transform into Learnable forms

What we want

What we have

$$\frac{1}{s} \log \frac{p^{\text{sample}}(\boldsymbol{x}|\boldsymbol{c})}{p(\boldsymbol{x}|\boldsymbol{c})} = \log \frac{p(\boldsymbol{x}|\boldsymbol{c})}{p(\boldsymbol{x})}$$

Conditional Residual, is Learnable

Theorem 3.1 (Noise Contrastive Estimation, proof in Appendix A). Let r_{θ} be a parameterized model which takes in an image-condition pair (x, c) and outputs a scalar value $r_{\theta}(x, c)$. Consider the loss function:

$$\mathcal{L}_{\theta}^{NCE}(\boldsymbol{x}, \boldsymbol{c}) = -\mathbb{E}_{p(\boldsymbol{x}, \boldsymbol{c})} \log \sigma(r_{\theta}(\boldsymbol{x}, \boldsymbol{c})) - \mathbb{E}_{p(\boldsymbol{x})p(\boldsymbol{c})} \log \sigma(-r_{\theta}(\boldsymbol{x}, \boldsymbol{c})).$$
(8)

Given unlimited model expressivity for r_{θ} , the optimal solution for minimizing $\mathcal{L}_{\theta}^{NCE}$ satisfies

$$r_{\theta}^*(\boldsymbol{x}, \boldsymbol{c}) = \log \frac{p(\boldsymbol{x}|\boldsymbol{c})}{p(\boldsymbol{x})}.$$
 (9)

New Parameterization

$$\log rac{p(m{x}|m{c})}{p(m{x})} \stackrel{ ext{learn}}{\longleftarrow} r_{m{ heta}}(m{x},m{c}) := rac{1}{s} \log rac{p_{m{ heta}}^{ ext{sample}}(m{x}|m{c})}{p_{m{\phi}}(m{x}|m{c})}$$

Alignment Loss

$$\mathcal{L}_{\theta}^{\text{CCA}} = -\mathbb{E}_{p(\boldsymbol{x},\boldsymbol{c})} \log \sigma \left[\frac{1}{s} \log \frac{p_{\theta}^{\text{sample}}(\boldsymbol{x}|\boldsymbol{c})}{p_{\phi}(\boldsymbol{x}|\boldsymbol{c})} \right] - \mathbb{E}_{p(\boldsymbol{x})p(\boldsymbol{c})} \log \sigma \left[-\frac{1}{s} \log \frac{p_{\theta}^{\text{sample}}(\boldsymbol{x}|\boldsymbol{c})}{p_{\phi}(\boldsymbol{x}|\boldsymbol{c})} \right]$$

New Parameterization

$$\log rac{p(m{x}|m{c})}{p(m{x})} \stackrel{ ext{learn}}{\longleftarrow} r_{m{ heta}}(m{x},m{c}) := rac{1}{s} \log rac{p_{m{ heta}}^{ ext{sample}}(m{x}|m{c})}{p_{m{\phi}}(m{x}|m{c})}$$

Alignment Loss

$$\mathcal{L}_{\theta}^{\text{CCA}} = -\mathbb{E}_{p(\boldsymbol{x},\boldsymbol{c})} \log \sigma \left[\frac{1}{s} \log \frac{p_{\theta}^{\text{sample}}(\boldsymbol{x}|\boldsymbol{c})}{p_{\phi}(\boldsymbol{x}|\boldsymbol{c})} \right] - \mathbb{E}_{p(\boldsymbol{x})p(\boldsymbol{c})} \log \sigma \left[-\frac{1}{s} \log \frac{p_{\theta}^{\text{sample}}(\boldsymbol{x}|\boldsymbol{c})}{p_{\phi}(\boldsymbol{x}|\boldsymbol{c})} \right]$$

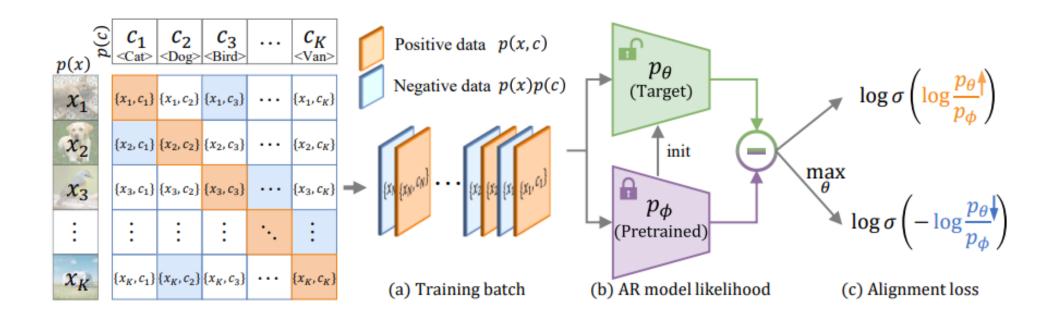
Image & Condition

Image & Random Condition

(Pretraining data)

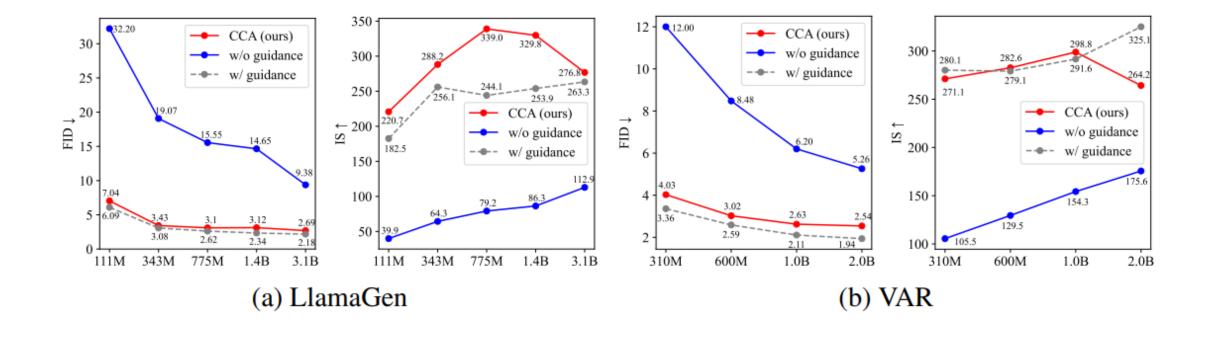
(Shuffled Data)

Condition Contrastive Alignment



$$\mathcal{L}_{\theta}^{\text{CCA}}(\boldsymbol{x}_{k}, \boldsymbol{c}_{k}, \boldsymbol{c}_{k}^{\text{neg}}) = -\underbrace{\log \sigma \left[\beta \log \frac{p_{\theta}^{\text{sample}}(\boldsymbol{x}_{k}|\boldsymbol{c}_{k})}{p_{\phi}(\boldsymbol{x}_{k}|\boldsymbol{c}_{k})}\right]}_{\text{relative likelihood for positive conditions}} \uparrow -\lambda \underbrace{\log \sigma \left[-\beta \log \frac{p_{\theta}^{\text{sample}}(\boldsymbol{x}_{k}|\boldsymbol{c}_{k}^{\text{neg}})}{p_{\phi}(\boldsymbol{x}_{k}|\boldsymbol{c}_{k}^{\text{neg}})}\right]}_{\text{relative likelihood for negative conditions}}$$

• How good is CCA?



• How good is CCA?

	Model		w/c	w/ Guidance			
	Wiodei	FID↓	IS↑	Precision [↑]	Recall [†]	FID↓	IS↑
Diffusion	ADM (Dhariwal & Nichol, 2021) LDM-4 (Rombach et al., 2022) U-ViT-H/2 (Bao et al., 2023) DiT-XL/2 (Peebles & Xie, 2023) MDTv2-XL/2 (Gao et al., 2023)	7.49 10.56 - 9.62 5.06	127.5 103.5 - 121.5 155.6	0.72 0.71 - 0.67 0.72	0.63 0.62 - 0.67 0.66	3.94 3.60 2.29 2.27 1.58	215.8 247.7 263.9 278.2 314.7
Mask	MaskGIT (Chang et al., 2023) MAGVIT-v2 (Yu et al., 2023) MAGE (Li et al., 2023)	6.18 3.65 6.93	182.1 200.5 195.8	0.80 - -	0.51 - -	1.78	314.7
Autoregressive	VQGAN (Esser et al., 2021) ViT-VQGAN (Yu et al., 2021) RQ-Transformer (Lee et al., 2022) LlamaGen-3B (Sun et al., 2024) +CCA (Ours) VAR-d30 (Tian et al., 2024) +CCA (Ours)	15.78 4.17 7.55 9.38 2.69 5.25 2.54	74.3 175.1 134.0 112.9 276.8 175.6 <u>264.2</u>	- 0.69 <u>0.80</u> 0.75 0.83	- - 0.67 0.59 0.62 0.56	5.20 3.04 3.80 2.18 - 1.92	280.3 227.4 323.7 263.3 - 323.1

Table 2: Model comparisons on class-conditional ImageNet 256×256 benchmark.

• How similar is CCA to CFG?

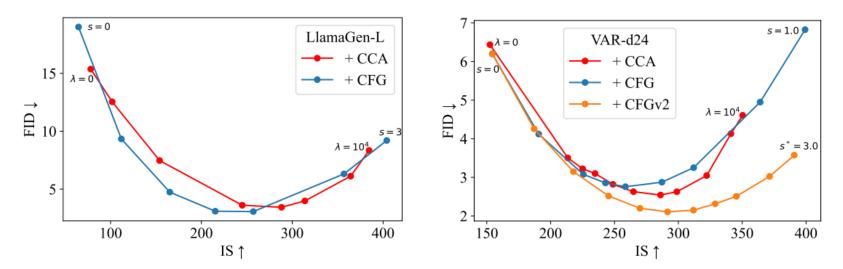


Figure 4: CCA can achieve similar FID-IS trade-offs to CFG by adjusting training parameter λ .

$$\mathcal{L}_{\theta}^{\text{CCA}}(\boldsymbol{x}_{k}, \boldsymbol{c}_{k}, \boldsymbol{c}_{k}^{\text{neg}}) = - \underbrace{\log \sigma \left[\beta \log \frac{p_{\theta}^{\text{sample}}(\boldsymbol{x}_{k}|\boldsymbol{c}_{k})}{p_{\phi}(\boldsymbol{x}_{k}|\boldsymbol{c}_{k})}\right]}_{\text{relative likelihood for positive conditions}} - \lambda \underbrace{\log \sigma \left[-\beta \log \frac{p_{\theta}^{\text{sample}}(\boldsymbol{x}_{k}|\boldsymbol{c}_{k}^{\text{neg}})}{p_{\phi}(\boldsymbol{x}_{k}|\boldsymbol{c}_{k}^{\text{neg}})}\right]}_{\text{relative likelihood for negative conditions}}$$

Can CCA be combined with CFG?

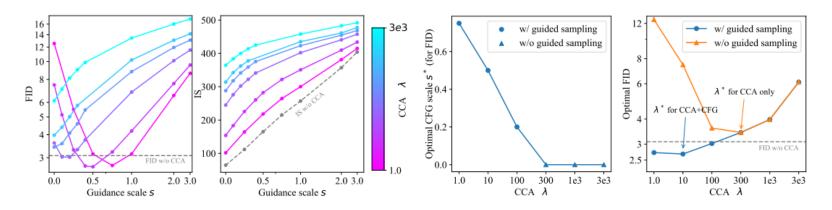


Figure 5: The impact of training parameter λ on the performance of CCA+CFG.

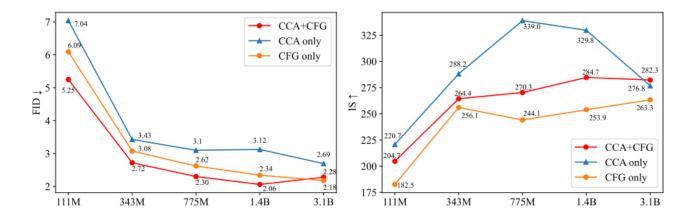


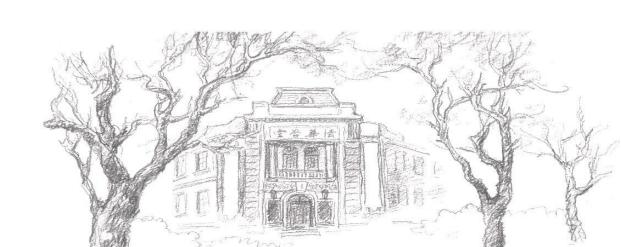
Figure 6: Integration of CCA+CFG yields improved performance over CFG alone.

Summary

Similar to LLMs, Visual AR can be vastly improved through finetuning.

Guided Sampling and RL Alignment are inherently connected.

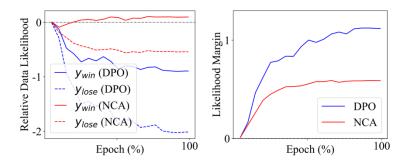
Thank you!



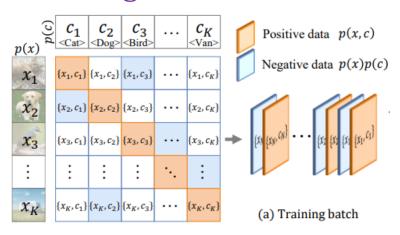
Why not DPO or Classifier Guidance?

DPO collapses (likelihood drop issue)

$$\mathcal{L}_{\text{DPO}} = -\mathbb{E}_{\{\boldsymbol{s}, \boldsymbol{a}_w \succ \boldsymbol{a}_l\}} \log \sigma(r_{\theta}^{\text{LM}}(\boldsymbol{s}, \boldsymbol{a}_w) - r_{\theta}^{\text{LM}}(\boldsymbol{s}, \boldsymbol{a}_l))$$
where
$$r_{\theta}^{\text{LM}}(\boldsymbol{s}, \boldsymbol{a}) := \beta \log \frac{\pi_{\theta}(\boldsymbol{a}|\boldsymbol{s})}{\mu_{\phi}(\boldsymbol{a}|\boldsymbol{s})}$$



 CG would be too computational expensive Almost impossible for text training



Ablation

Model	FID↓	IS	sFID↓	Precision	Recall	Model	FID↓	IS	sFID↓	Precision	Recall
LlamaGen-L	19.00	64.7	8.78	0.61	0.67	VAR-d24	6.20	154.3	8.50	0.74	0.62
+DPO	61.69	30.8	44.98	0.36	0.40	+DPO	7.53	232.6	19.10	0.85	0.34
+Unlearn	12.22	111.6	7.99	0.66	0.64	+Unlearn	5.55	165.9	8.41	0.75	0.61
+CCA	3.43	288.2	7.44	0.81	0.52	+CCA	2.63	298.8	7.63	0.84	0.55

Table 3: Comparision of CCA and LLM alignment algorithms in visual generation.

Guided Sampling

Diffusion Guidance

$$\tilde{\boldsymbol{\epsilon}}_t = (1+w)\boldsymbol{\epsilon}_{\theta}(\mathbf{z}_t, \mathbf{c}) - w\boldsymbol{\epsilon}_{\theta}(\mathbf{z}_t)$$

AR Guidance

$$\ell^{\text{sample}} = \ell^c + s(\ell^c - \ell^u)$$

Sampling Target

$$p^{ ext{sample}}(oldsymbol{x}|oldsymbol{c}) \propto p_{\phi}(oldsymbol{x}|oldsymbol{c}) \left[rac{p_{\phi}(oldsymbol{x}|oldsymbol{c})}{p_{\phi}(oldsymbol{x})}
ight]^{s}$$