

Simon Schug

Seijin Kobayashi

Yassir Akram

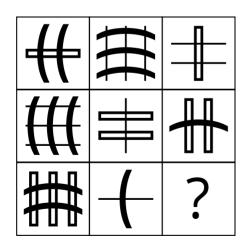
João Sacramento

Razvan Pascanu

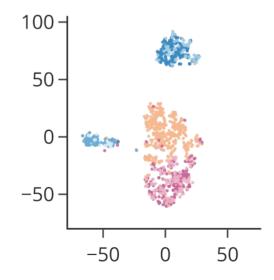
Overview

How do transfomers compositionally generalize?

Part I: Symbolic Raven
An abstract reasoning task to study
compositional generalization



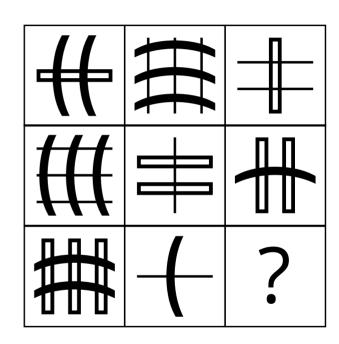
Part II: Attention as a hypernetwork
Treating attention as a hypernetwork reveals
reusable & interpretable operations.



Raven's progressive matrices

A non-verbal test to measure human intelligence and abstract reasoning.^{1,2}

- · 3x3 matrices with the final panel hidden
- Require discovering one or several rules that govern the features encoded in each image
 - Simpler tasks can often be solved quickly through pattern recognition
 - More difficult tasks require generating and testing hypotheses
- Difficulty of finding correspondences²:
 - Which figural elements correspond to each other / are operated by the same rule



¹Raven, 1936

²Carpenter et al., Psych. Rev., 1990

Symbolic Raven

Generating symbolically encoded Raven's matrices

- Each panel has K different features.
- The features of each panel change according to *K* rules within each row.
- · Each rule is a function that takes two integers as input and outputs an integer. Pr
- The features of each panel are permuted according to a random permutation which is fixed per column.

	2 1	$rac{2}{2}$	2 3
Consta rogressi		3	3 4
	1 1	2	?

$\lceil 1 \rceil$	$\lceil 2 \rceil$	$\begin{bmatrix} 1 \end{bmatrix}$
$\lfloor 2 \rfloor$	$\lfloor 1 \rfloor$	$\lfloor 2 \rfloor$
Column 1	Column 2	Column 3

Symbolic Raven

Testing compositional generalization

We hold-out certain rule combinations from the training distribution in order to test if models can compositionally generalize.

Split rule combinations

Splits

75%

OOD

Train AA

AB

AD

GH

AC

HH

Rules

A constant

B progression (+1)

C progression (+2)

D progression (-1)

E progression (-2)

F sum

G difference

H distribute-three

1. Sample task rules

Combination of M rules

constant

(e.g. **AB**) progression (+1)

Permutation

Each column permutes features to model the problem of finding correspondences.

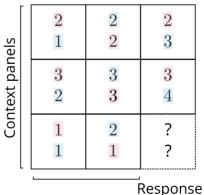
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Column 1

Column 2

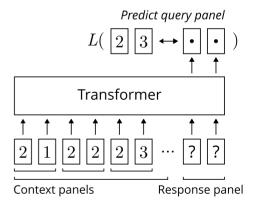
Column 3

2. Sample task instance



panel

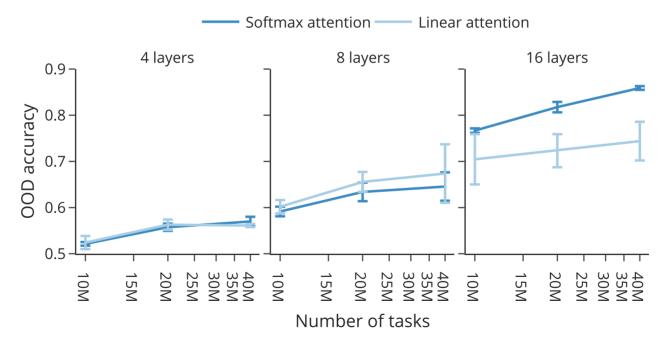
3. In-context learning



In-context learning

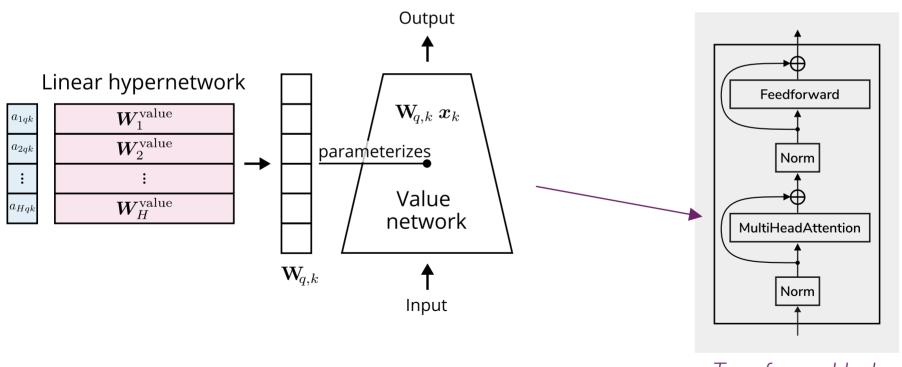
Scaling data and network size

At sufficient scale, transformers can compositionally generalize on the Symbolic Raven task.



How do they do it?

Hypothesis: An implicit hypernetwork mechanism inside of multi-head attention supports composing reusable operations.

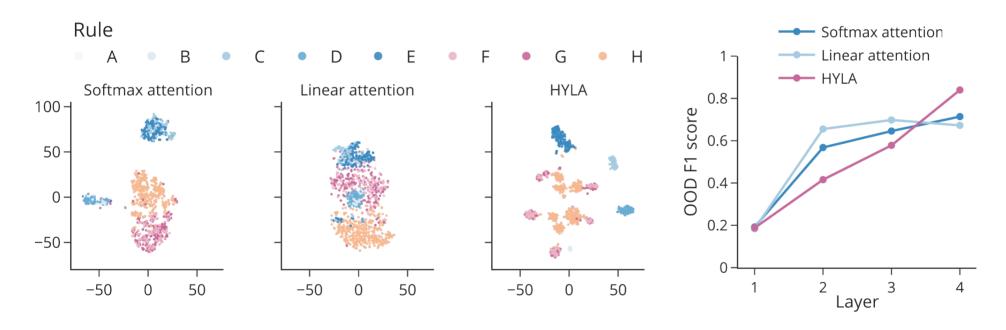


Hypothesis: An implicit hypernetwork mechanism inside of multi-head attention supports composing reusable operations.

$$\begin{aligned} \operatorname{MHA}_{q}(\mathbf{X}) := & \mathbf{W}^{\operatorname{out}} \bigoplus_{h=1}^{H} \sum_{k=1}^{T} a_{h,q,k} \ \mathbf{W}_{h}^{\operatorname{value}} \mathbf{x}_{k} \\ = & \sum_{h=1}^{H} \mathbf{W}_{h}^{\operatorname{out}} \sum_{k=1}^{T} a_{h,q,k} \ \mathbf{W}_{h}^{\operatorname{value}} \mathbf{x}_{k} \\ = & \sum_{k=1}^{T} \left(\sum_{h=1}^{H} \underbrace{a_{h,q,k}}_{\text{latent code}} \ \underbrace{\mathbf{W}_{h}^{\operatorname{out}} \mathbf{W}_{h}^{\operatorname{value}}}_{\text{hypernetwork}} \right) \mathbf{x}_{k} \\ = & \sum_{k=1}^{T} \underbrace{\mathbf{W}_{q,k}}_{\text{value network}} \mathbf{x}_{k} \end{aligned}$$

Latent code structure

The latent code is functionally structured and predictive of the task rules.



HYpernetwork Linear Attention

Reinforcing the hypernetwork mechanism

The value network of standard multi-head attention is linear.

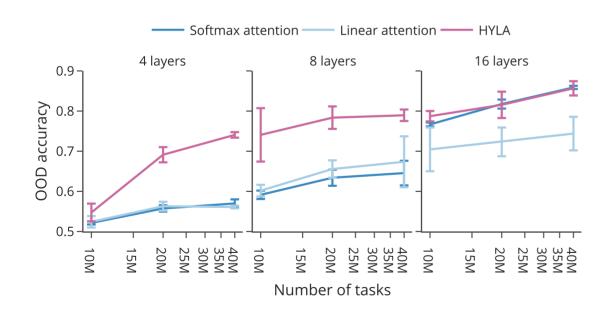
We can make it nonlinear without introducing additional parameters.

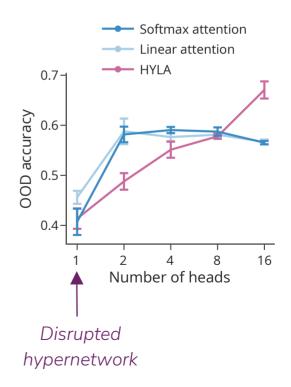
$$\begin{aligned} \text{HYLA}_{q}(\mathbf{X}) &= \sum_{k=1}^{T} \left(\sum_{h=1}^{H} a_{h,q,k} \; \mathbf{W}_{h}^{\text{out}} \right) \phi \left(\sum_{h=1}^{H} a_{h,q,k} \; \mathbf{W}_{h}^{\text{value}} \mathbf{x}_{k} \right) \\ &= \sum_{k=1}^{T} \mathbf{W}_{q,k}' \phi(\mathbf{W}_{q,k} \mathbf{x}_{k}), \end{aligned}$$

We use HYLA as an experimental intervention to evaluate whether the hypernetwork mechanism is useful for abstract reasoning.

Modifying the hypernetwork mechanism

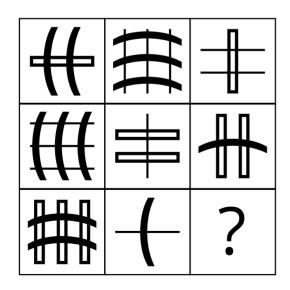
Reinforcing the hypernetwork mechanism improves compositional generalization, disrupting it hurts compositional generalization.





Checkout the full paper if you are curious to see:

- · The hypernetwork mechanism at play on fuzzy logic functions
- The impact of the hypernetwork mechanism on language modeling
- The solution to (in Fig. 3B)



Link to OpenReview