Predict the Next Token and Diffuse Images with One Multi-Modal Model

Chunting Zhou*, Lili Yu*, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob Kahn, Xuezhe Ma, Luke Zettlemoyer, Omer Levy

Multimodal AI getting Ubiquitous

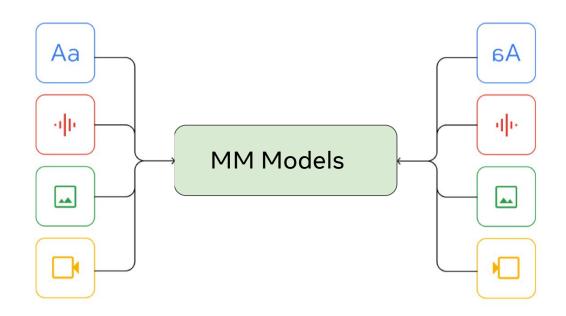
Physical Intelligence $~\pi_{0.5}$

Introducing Gemini 2.0 | Our most capable AI model yet

Gemini 2.0 Multimodal Agent

OpenAl Sora, text-2-video model

Any-to-any Generative Pretraining



A single simple model for all modalities, that can perceive, process, and produce both discrete and continuous elements.

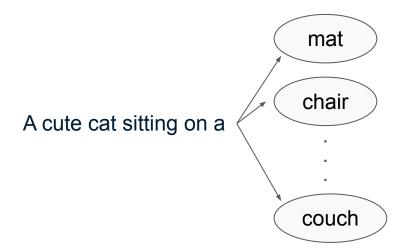
The problem: no unified model

SotA text generation model

Predict the next token

SotA image generation model

Noising + denoising



The problem: no unified model

SotA text generation model

Tokenization: discrete tokens

Loss: cross-entropy loss

Architecture: causal transformer

A cute cat sitting on a chair couch

SotA image generation model

Tokenization: continuous vector

Loss: diffusion/flow loss

Architecture: bidirectional transformer

How to train a single model to generate SOTA text and image?

How does transfusion perform on text and image generation?

Does transfusion generalize to new modality combinations?

How to train a single model to generate SOTA text and image?

Problem: no unified model

SotA text generation model

Tokenization: discrete tokens

Loss: cross-entropy loss

Architecture: causal transformer

SotA image generation model

Tokenization: continuous vector

Loss: diffusion/flow loss

Architecture: bidirectional transformer

Transfusion: best of both worlds

SotA text generation model

Tokenization: discrete tokens

Loss: cross-entropy loss

Architecture: causal transformer

SotA image generation model

Tokenization: continuous vector

Loss: diffusion/flow loss

Architecture: bidirectional transformer

SotA text generation model

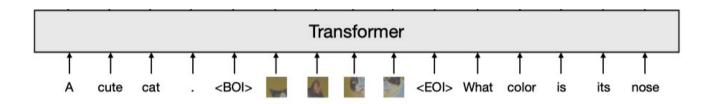
SotA image generation model

Tokenization: discrete tokens

Tokenization: continuous vector

Loss: cross-entropy loss Loss: diffusion/flow loss

Architecture: causal transformer Architecture: bidirectional transformer



Data is any arbitrary sequence of interleaved text and images

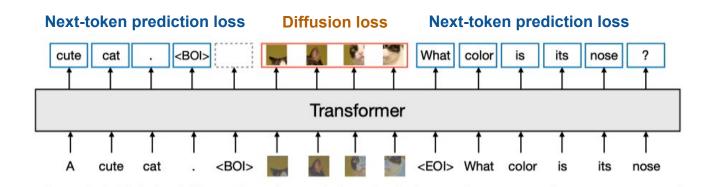
SotA text generation model SotA image generation model

Tokenization: discrete tokens

Tokenization: continuous vector

Loss: cross-entropy loss Loss: diffusion/flow loss

Architecture: causal transformer Architecture: bidirectional transformer



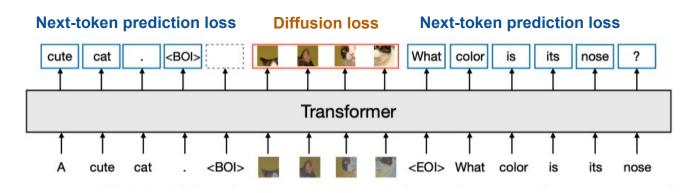
SotA text generation model SotA image generation model

Tokenization: discrete tokens

Tokenization: continuous vector

Loss: cross-entropy loss Loss: diffusion/flow loss

Architecture: causal transformer Architecture: bidirectional transformer



$$\mathcal{L}_{Transfusion} = \mathcal{L}_{CE} + \lambda \cdot \mathcal{L}_{Diffusion}$$

SotA text generation model

Tokenization: discrete tokens

Loss: cross-entropy loss

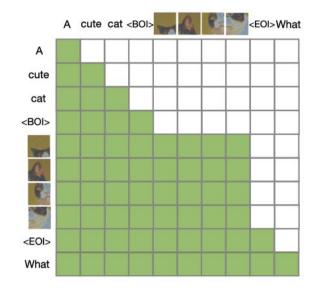
Architecture: causal transformer

SotA image generation model

Tokenization: continuous vector

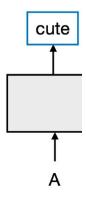
Loss: diffusion/flow loss

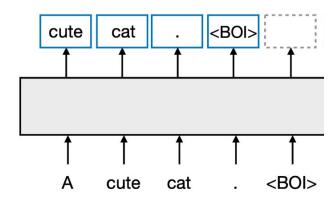
Architecture: bidirectional transformer

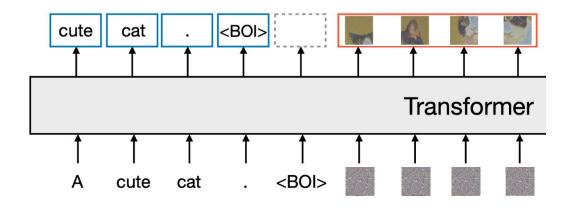


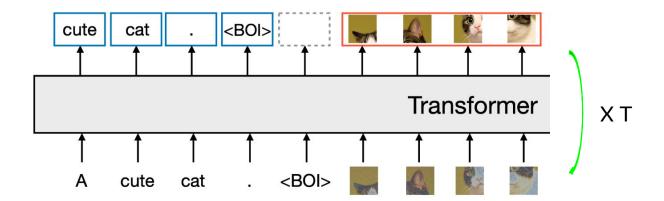
Transfusion uses global causal and image bidirectional attention.

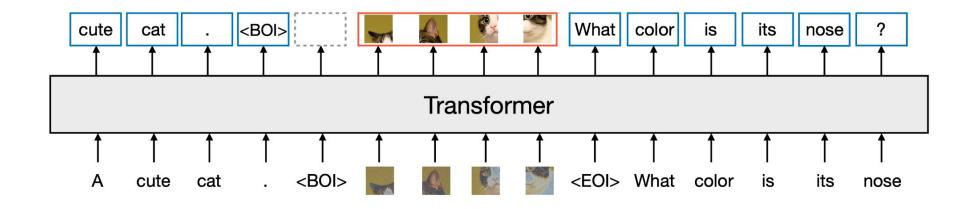
Dramatically improves image generation, and is critical for scaling up.











Transfusion can generates arbitrary image-text sequences, enjoy other LM properties, such as KV caching, and in-context learning

How does transfusion perform on text and image generation?

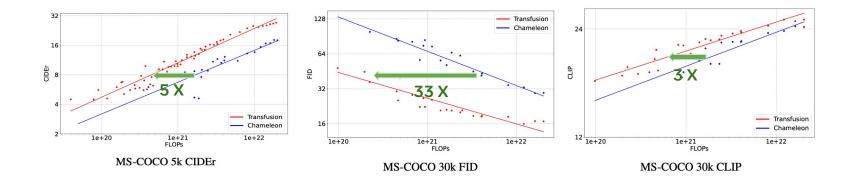
Experiment setups

We pretrain transfusion on mixed-modality data, and compare with Chameleon (quantized image tokens) with **controlled tokenizer**, **data**, **and model parameters**.

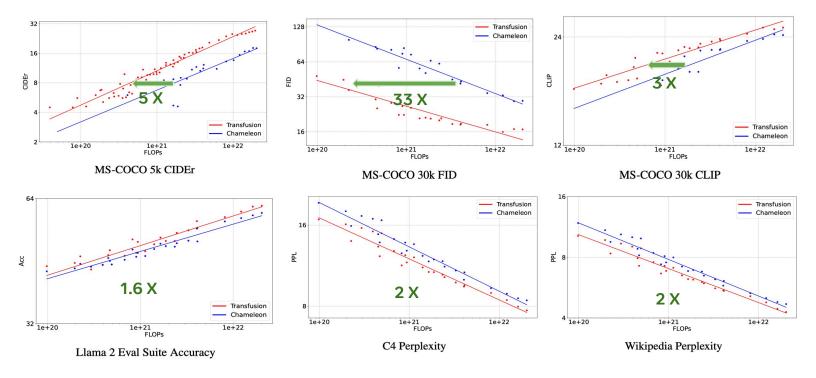
Many model sizes:

163m, 373m, 760m, 1.4b, 7.1b

Result 2: Transfusion vs Chameleon



Result 2: Transfusion vs Chameleon



Transfusion scales significantly better than Chameleon in every combination of modalities.

Result 2: scale up model

Model	Model Params	Text Tokens	Images
-------	-----------------	----------------	--------

Result 2: scale up model

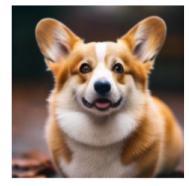
Model	Model Params	Text Tokens	Images	Llama Acc (†)
Llama 1 [Touvron et al., 2023a] Llama 2 [Touvron et al., 2023b] Chameleon [Chameleon Team, 2024]	7.1B 7.1B 7.1B	1.4T 2.0T 6.0T	 5.0B	66.1 66.3 67.1
Transfusion (Ours)	7.3B	1.0T	3.5B	66.1

Result 2: scale up model

Model	Model Params	Text Tokens	Images	Llama Acc (†)	COCO FID (\$\dagger\$)	Gen Eval (↑)
Llama 1 [Touvron et al., 2023a]	7.1B	1.4T	_	66.1	_	_
Llama 2 [Touvron et al., 2023b]	7.1B	2.0T		66.3		
Chameleon [Chameleon Team, 2024]	7.1B	6.0T	5.0B	67.1	26.74	0.39
Imagen [Saharia et al., 2022]	$2.6B + 4.7B^*$		5.0B	_	7.27	
Parti [Yu et al., 2022]	20B		4.8B		^r 7.23	_
SD 1.5 [Rombach et al., 2022b]	$0.9B + 0.1B^*$	_	4.0B	-	 -	0.43
SD 2.1 [Rombach et al., 2022b]	$0.9B + 0.1B^*$		2.3B		_	0.50
DALL-E 2 [Ramesh et al., 2022]	$4.2B + 1B^*$		2.6B		10.39	0.52
SDXL [Podell et al., 2023]	$2.6B + 0.8B^*$		1.6B	_	_	0.55
DeepFloyd [Stability AI, 2024]	$5.5B + 4.7B^*$	_	7.5B	_	6.66	0.61
SD 3 [Esser et al., 2024b]	$8B + 4.7B^*$	_	^s 2.0B	_	_	0.68
Transfusion (Ours)	7.3B	1.0T	3.5B	66.1	6.78	0.63

An armchair in the shape of an avocado

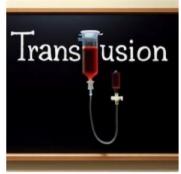
A bread, an apple, and a knife on a table



A corgi.

human life depicted entirely out of fractals

A blue jay standing on a large basket of rainbow macarons.



"Transfusion" is written on the blackboard.

A close up photo of a human hand, hand model. High quality

A cloud in the shape of two bunnies playing with a ball. The ball is made of clouds too.

the word 'START' on a blue t-shirt

A Dutch still life of an arrangement of tulips in a fluted vase. The lighting is subtle, casting gentle highlights on the flowers and emphasizing their

delicate details and natu-

ral beauty.

rug.

A wall in a royal castle. There are two paintings on the wall. The one on the left a detailed oil paint-

ing of the royal raccoon

king. The one on the right

a detailed oil painting of the royal raccoon queen.

Three spheres made of glass falling into ocean. Water is splashing. Sun is setting.

A transparent sculpture of

a duck made out of glass.

A chromeplated cat sculpture placed on a Persian

A kangaroo holding a beer, wearing ski goggles and passionately singing silly songs.

an egg and a bird made of wheat bread

Does transfusion generalize to new modality combinations?

Generalization text case: image editing

Pretraining:

Text -> text

Text -> image

Image -> text

Finetuning:

Image + text -> image ?

Generalization text case: image editing

Pretraining:

Text -> text

Text -> image

Image -> text

Finetuning:

Image + text -> image ✓

8K examples.
Seamlessly edit images.

Remove the cupcake on the plate.

Write the word "Zebra" in Arial bold.

Change the tomato on the right to a green olive.

Change this to cartoon style.

How to train a single model to generate SOTA text and image?

How does transfusion perform on text and image generation?

Does transfusion generalize to new modality combinations?

- How to train a single model to generate SOTA text and image?
- Transfusion: predict the next token and diffuse images in one model.

How does transfusion perform on text and image generation?

Does transfusion generalize to new modality combinations?

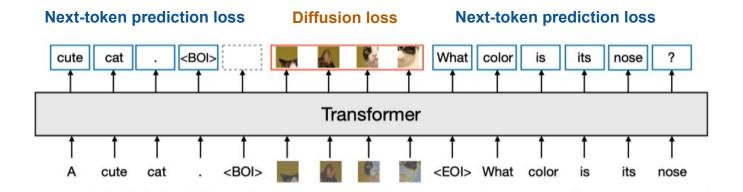
- How to train a single model to generate SOTA text and image?
- Transfusion: predict the next token and diffuse images in one model.

- How does transfusion perform on text and image generation?
- Scales much better than quantized image tokens.
- Generates high-quality images, competitive with similar-scale diffusion models, while maintaining zero regret on text generation capabilities.
 - Does transfusion generalize to new modality combinations?

- How to train a single model to generate SOTA text and image?
- > Transfusion: predict the next token and diffuse images in one model.

- How does transfusion perform on text and image generation?
- Scales much better than quantized image tokens.
- Generates high-quality images, competitive with similar-scale diffusion models, while maintaining zero regret on text generation capabilities.
- Does transfusion generalize to new modality combinations?
- Transfusion seamlessly works with any combination of discrete and continuous modalities, such as image editing.

Questions?



Transfusion vs Chameleon on text performance

Deep dive into text performance

Model		Batch	C4 PPL (↓)	Wiki PPL (↓)	Llama Acc (†)
Llama 2		1M Text Tokens	10.1	5.8	53.7
Transfusion	+ Diffusion	+ 1M Image Patches	(+0.3) 10.4	(+0.2) 6.0	(-1.0) 52.7
Chameleon	+ Stability Modifications + LM Loss on Image Tokens	1M Text Tokens + 1M Image Tokens	(+0.9) 11.0 (+0.8) 11.8	(+0.5) 6.3 (+0.5) 6.8	(-1.8) 51.9 (-3.0) 48.9

Table 4: Performance of the 0.76B Transfusion and Chameleon models on text-only benchmarks, compared to the original Llama 2 recipe.

Modal Arch: modality-specific encoding+decoding

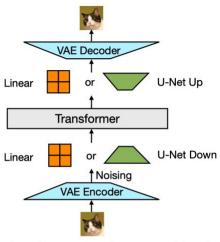


Figure 3: We convert images to and from latent representations using a pretrained VAE, and then into patch representations with either a simple linear layer or U-Net down blocks.

Model Params	Enc/Dec	∆ Enc/Dec Params	C4 PPL (↓)	Wiki PPL (↓)	Llama Acc (†)	CDr (†)	MS-COCO FID (\dagger)	CLIP (†)
0.16B	Linear	0.5%	14.8	8.8	44.2	6.2	37.6	20.0
	U-Net	106.1%	14.4	8.5	45.7	15.3	18.8	23.9
0.37B	Linear	0.4%	12.0	7.0	47.9	11.1	21.5	22.4
	U-Net	71.3%	11.8	6.9	48.8	21.1	18.1	24.9
0.76B	Linear	0.4%	10.4	6.0	51.7	16.0	20.3	24.0
	U-Net	35.5%	10.3	5.9	51.9	25.4	16.7	25.4
1.4B	Linear	0.4%	9.5	5.4	53.8	19.1	19.4	24.3
	U-Net	19.3%	9.4	5.4	53.4	28.1	16.6	25.7
7B	Linear	0.3%	7.7	4.3	61.5	27.2	18.6	25.9
	U-Net	3.8%	7.8	4.3	61.1	33.7	16.0	26.5

U-net adds fixed parameters, becoming insignificant when transformer grows

Significant improvement on image generation and understanding

Modal Arch: compress tokens on the fly

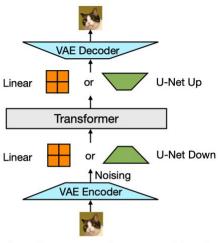


Figure 3: We convert images to and from latent representations using a pretrained VAE, and then into patch representations with either a simple linear layer or U-Net down blocks.

Enc/Dec	Latent/ Patch	Pixel/ Patch	Patch/ Image	
None	1×1	8×8	1024	
	2×2	16×16	256	
Linear	4×4	32×32	64	
	8×8	64×64	16	
	2×2	16×16	256	
U-Net	4×4	32×32	64	
	8×8	64×64	16	

Modal Arch: compress tokens on the fly

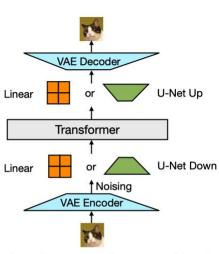
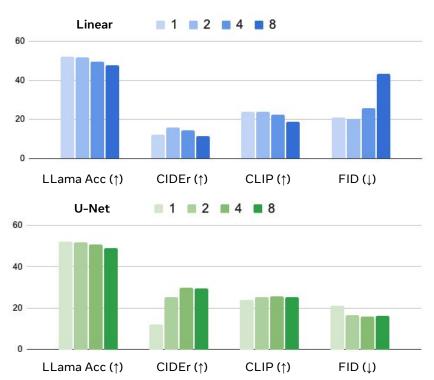


Figure 3: We convert images to and from latent representations using a pretrained VAE, and then into patch representations with either a simple linear layer or U-Net down blocks.



Transfusion models with U-net can compress each image to just 16 patches.

Modal Arch: customized attention mask

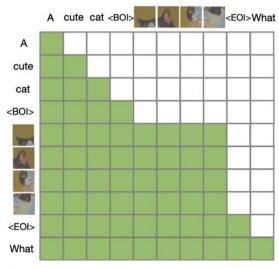


Figure 4: Expanding on the causal mask, Transfusion allows patches of the same image to condition on each other.

