

Learning to Discover Regulatory Elements for Gene Expression Prediction

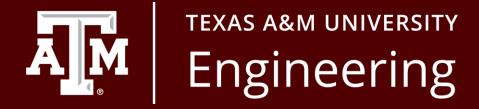
Xingyu Su^{1*}, Haiyang Yu^{1*}, Degui Zhi², and Shuiwang Ji^{1†}

¹Texas A&M University

2The University of Texas Health Science Center at Houston

Presenter: Cong Fu, Texas A&M University

* denotes equal contribution † denotes corresponding author

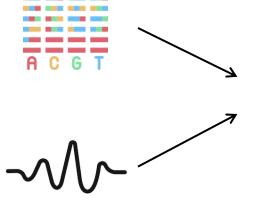


Background

Gene Expression Prediction

- Gene expression prediction is important because it helps us understand how genetic and regulatory variations influence cellular behavior and disease outcome
- Predicting target gene expression value Y for various cell types
 - \triangleright Given DNA sequence X_{seq} and epigenomic signals X_{sig}
- DNA sequence X_{seq}
 - Same static genomic context for all the cells
- Epigenomic signals X_{sig}
 - Dynamic, cell-type-specific markers

DNA sequence X_{seq}



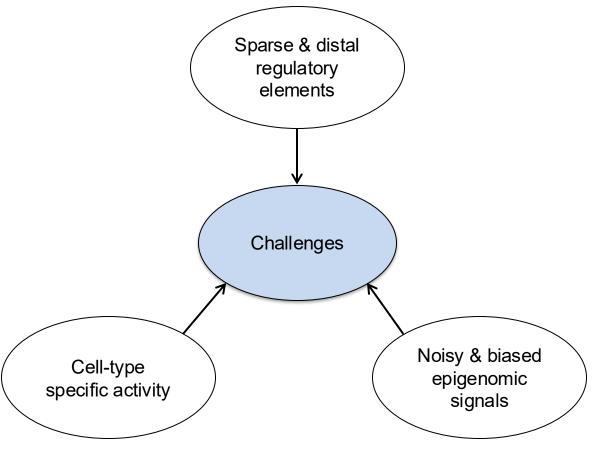
ॐ ——

Neural Network

Epigenomic signals X_{sig}

Gene Expression Value Y

Biological Challenges

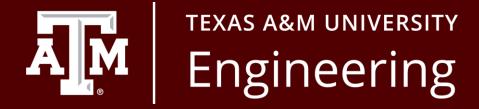


- Regulatory elements are sparse and distal
 - Only a few functional elements
 - Long-range interactions
- Functional activity is cell-type specific
 - The same promoters/enhancers can be active in one cell type and inactive in another
 - Requires context-aware modeling to reflect epigenetic variation
- Epigenomic signals are noisy and biased
 - E.g., DNase-seq, ChIP-seq, and Hi-C each have different biases
 - Signal quality varies across genomic regions and cell types

Limitations of Existing Methods

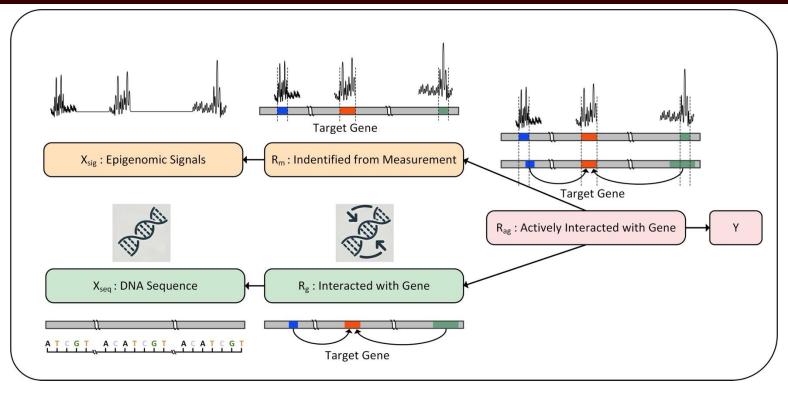
Existing Methods	General Approach	Limitations
DNA-only Methods	 Encode full DNA sequence with deep learning models Use DNA alone to predict expression 	 Cannot model dynamic, cell-type- specific regulatory elements Fail to capture functional differences from the same static sequence
Peak-based Methods	 Identify regulatory regions using epigenomic peak-calling methods Use extracted signal features from peaks for prediction 	 Heuristic region selection is not task- optimized Miss low-signal but important regions

- Other general limitations
 - ➤ No explicit modeling of causal relationships
 - ➤ Poor generalization to unseen cell types



Methods

Causal Relationship



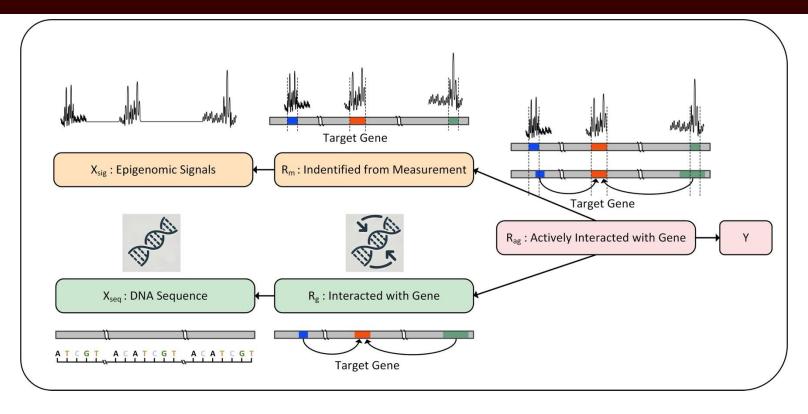
Three Key Components

 R_g - <u>Genomic candidates</u>: Regulatory elements that could interact with the target gene; but may be inactive in certain cell types

 R_m - <u>Measured regions</u>: Detected via epigenomic signals may correlate with expression, but their true target gene is often unknown

 R_{ag} - <u>Active and causal regulatory elements</u>: Regulatory elements that directly influence target gene expression. These are the true causal drivers we aim to discover

Causal Relationship



 $X_{seq} \leftarrow R_g$: DNA sequence containing of all regulatory elements R_g interacted with target gene and other non-causal regions

 $R_{ag} \rightarrow Y$: Causal active regulatory region that directly affects the gene expression

 $R_g \leftarrow R_{ag} \rightarrow R_m$: Key causal region shared by both DNA and epigenomic signals

 $R_m \rightarrow X_{sig}$: Regulatory elements R_m by measurement reflecting active regions in the cell, often showing as peaks in experiments

Task Objective

- Based on information bottleneck, we learn a token level soft/hard mask M, to extract regulatory elements
- Assume each token mask selection is independent given the input sequences $p(M|X) = \prod_i p(m_i|X)$
- Objective loss function

$$L \approx \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{p_{\theta}(m_i|x_i)} \left[-\log q_{\phi}(y_i|m_i \odot x_i) \right] + \beta KL[p_{\theta}(m_i|x_i), r(m_i)]$$

> Task specific loss + constraint on the learned mask *m*

Decomposition of Sequences & Signals

Assumption 1

 \succ Conditioned on the selection of regulatory elements M, the DNA sequences and epigenomic signals are condition independent

$$p(X_{sig}, X_{seq}|M) = p(X_{sig}|M)p(X_{seq}|M)$$

- Based on the previous causal relationships
- Proposition 1
 - The estimation of $p_{\theta}(M|X)$ can be divided into $p_{\theta}(M|X) \propto p_{\theta_1}(M|X_{seq})p_{\theta_2}(M|X_{siq})$
 - Divide the learning of mask into contributions from DNA sequence and epigenomic signals

Mask Distribution

Assumption 2

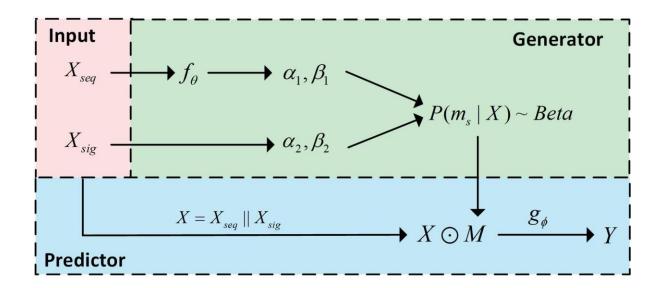
- \triangleright We assume the mask distribution follows Beta distribution, i.e., $m_s \sim Beta(\alpha, \beta)$
- Reason for choosing Beta distribution
 - Beta distribution naturally quantifies the success rates.
 - \Box The success rates is controlled by varying the value of α and β
 - Product of two Beta distributions can result in another Beta distribution

Proposition 2

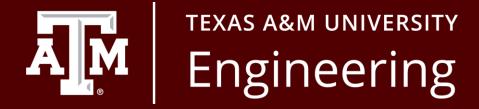
- Given $p_{\theta_1}(m_s|X_{seq}) \sim Beta(\alpha_1, \beta_1)$ and $p_{\theta_2}(m_s|X_{sig}) \sim Beta(\alpha_2, \beta_2)$, the product follows: $Beta(\alpha_1 + \alpha_2 1, \beta_1 + \beta_2 1)$
- \triangleright We can directly model both distributions by predicting parameters of α and β
- We use straight-through estimator to ensure differentiability for hard mask
- Set prior $r(m_s)$ to control the sparsity

Seq2Exp Architecture

- Model both mask distribution $p_{\theta_1}(m_s|X_{seq})$ and $p_{\theta_2}(m_s|X_{sig})$
- Inputs
 - \triangleright DNA sequence X_{seq} and epigenomic signals X_{sig}
- Mask from DNA sequences
 - ▶ Use mask generator f_{θ} to learn Beta distribution parameters (α_1, β_1) from X_{seq}
- Mask from epigenomic signals
 - \triangleright (α_2, β_2) is derived from X_{sig} in a non-parametric way
- Result mask distribution
 - \triangleright Combine two Beta distribution to get $p(m_s|X)$



- Regulatory Element Selection
 - Sample a mask to select actively interacting regions
- Predictor Model (g_{ϕ})
 - Use selected sub-sequences to predict gene expression



Experiments

Experiments - Settings

- Predict CAGE (Cap Analysis of Gene Expression) values on cell K562 and GM12878
 - > DNA sequences: HG38 human reference genome
 - > Epigenomic signals: DNase-seq, H3K27ac, Hi-C
 - Consider 18,377 protein-coding target genes

Baselines

- > DNA based models: Enformer, HyenaDNA, Mamba, Caduceus
- DNA & signal model: EPInformer

Metric

- MSE, MAE, Pearson correlation between the predicted and real CAGE
- Implementation
 - \blacktriangleright Both generator p_{θ} and predictor q_{ϕ} are based on Caduceus architecture
 - Leverage cross-chromosome validation strategy
 - ☐ chr 3&21 as validation, chr 22&X as testing
 - Consider window size of 200k surrounded by target genes

Experiments

Methods:

- Seq2Exp-hard: assign hard mask to DNA base pair
- Seq2Exp-soft: assign soft probability to DNA base pair

Cell types: K562 GM12878

	MSE ↓	$MAE\downarrow$	Pearson ↑
Enformer	0.2889 ± 0.0009	0.4185 ± 0.0013	0.8327 ± 0.0025
HyenaDNA	0.2217 ± 0.0018	0.3562 ± 0.0012	0.8729 ± 0.0010
Mamba	0.2145 ± 0.0021	0.3446 ± 0.0022	0.8788 ± 0.0011
Caduceus	0.2124 ± 0.0037	0.3436 ± 0.0031	0.8819 ± 0.0009
Caduceus w/ signals	0.1942 ± 0.0058	0.3269 ± 0.0048	0.8928 ± 0.0017
EPInformer	0.1975 ± 0.0031	$\underline{0.3246 \pm 0.0025}$	0.8907 ± 0.0011
MACS3	0.2340 ± 0.0028	0.3654 ± 0.0017	0.8634 ± 0.0020
Seq2Exp-hard	0.1890 ± 0.0045	0.3199 ± 0.0040	0.8916 ± 0.0027
Seq2Exp-soft	0.1873 ± 0.0044	0.3137 ± 0.0028	0.8951 ± 0.0038

	MSE↓	$MAE\downarrow$	Pearson ↑	
Enformer	0.2920 ± 0.0050	0.4056 ± 0.0040	0.7961 ± 0.0019	
HyenaDNA	0.2265 ± 0.0013	0.3497 ± 0.0012	0.8425 ± 0.0008	
Mamba	0.2241 ± 0.0027	0.3416 ± 0.0026	0.8412 ± 0.0021	
Caduceus	0.2197 ± 0.0038	0.3327 ± 0.0070	0.8475 ± 0.0014	
Caduceus w/ signals	0.1959 ± 0.0036	0.3187 ± 0.0036	0.8630 ± 0.0008	
EPInformer	0.2140 ± 0.0042	0.3291 ± 0.0031	0.8473 ± 0.0017	
MACS3	0.2195 ± 0.0023	0.3455 ± 0.0018	0.8435 ± 0.0013	
Seq2Exp-hard Seq2Exp-soft	0.1863 ± 0.0051 0.1856 ± 0.0032	0.3074 ± 0.0036 0.3054 ± 0.0024	0.8682 ± 0.0045 0.8723 ± 0.0012	
	0.1020 ± 0.0032	0.0024 ± 0.0024		

Experiments

Evaluate the regulatory elements extracted by different methods

- Seq2Exp-hard: train both generator and predictor together to extract regulatory elements
- Seq2Exp-retrain: extract top 10% base pairs from soft mask and only train the predictor
- MACS3: statistical methods to extract regulatory elements region

	K562			GM12878				
	MSE ↓	$MAE \downarrow$	Pearson ↑	Mask Ratio	MSE↓	MAE↓	Pearson ↑	Mask Ratio
Seq2Exp-hard	0.1863	0.3074	0.8682	6.88%	0.1890	0.3199	0.8916	6.32%
Seq2Exp-retrain	0.1979	0.3168	0.8623	10.00%	0.1887	0.3177	0.8941	10.00%
MACS3	0.2195	0.3455	0.8435	13.61%	0.2340	0.3654	0.8634	15.95%

Conclusion

Summary

- Introduced Seq2Exp, a causal and interpretable framework for gene expression prediction
- Jointly models DNA sequences and epigenomic signals to learn regulatory element masks
- Achieves state-of-the-art performance on gene expression prediction in K562 and GM12878

Future works

- Extend to more diverse cell types and additional epigenomic signals
- Develop pretraining models for generalizable regulatory region extraction across cell types
- Explore causal interpretation in broader biological and clinical contexts

