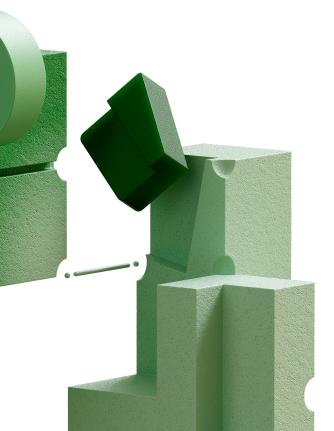
Google DeepMind



Inference Scaling for Long-Context Retrieval Augmented Generation

Zhenrui Yue*^{1,2}, Honglei Zhuang*¹, Aijun Bai¹, Kai Hui¹, Rolf Jagerman¹, Hansi Zeng^{1,3}, Zhen Qin¹, Dong Wang², Xuanhui Wang¹, Michael Bendersky¹

¹Google DeepMind

https://arxiv.org/abs/2410.04343

²University of Illinois Urbana-Champaign

³University of Massachusetts Amherst

^{*}Equal contribution

Inference Scaling

A series of recent studies show that increasing the amount of inference-time computation can be similar (Agarwal et al., 2024), if not more effective (Snell et al., 2024) than allocating those computation to training in some scenarios.

Examples include:

- Scaling the number of examples in ICL
- Scaling best-of-N samples along with sequential revisions
- Scaling reasoning iterations (e.g., OpenAl's o1 model)
- ..

Inference Scaling for RAG

With the advances in long-context LLMs, recent studies also attempt to better leverage the full context-length in retrieval-augmented generation (RAG) tasks.

Studies on inference scaling for RAG mostly focus on scaling the **number of documents** (Ram et al., 2023; Shao et al., 2024; Lee et al., 2024; Xu et al., 2024;) or the **length of documents** (Jiang et al., 2024).

O. Ram, Y. Levine, I. Dalmedigos, D. Muhlgay, A. Shashua, K. Leyton-Brown, and Y. Shoham. Incontext retrieval-augmented language models. Transactions of the Association for Computational Linguistics, 11:1316–1331, 2023. R. Shao, J. He, A. Asai, W. Shi, T. Dettmers, S. Min, L. Zettlemoyer, and P. W. Koh. Scaling retrieval based language models with a trillion-token datastore. arXiv:2407.12854, 2024.

P. Xu, W. Ping, X. Wu, L. McAfee, C. Zhu, Z. Liu, S. Subramanian, E. Bakhturina, M. Shoeybi, and B. Catanzaro. Retrieval meets long context large language models. In ICLR, 2024.

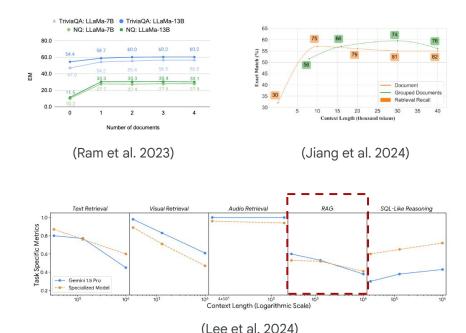
J. Lee, A. Chen, Z. Dai, D. Dua, D. S. Sachan, M. Boratko, Y. Luan, S. M. Arnold, V. Perot, S. Dalmia, et al. Can long-context language models subsume retrieval, RAG, SQL, and more? arXiv preprint arXiv:2406.13121, 2024a. Z. Jiang, X. Ma, and W. Chen, LongRAG: Enhancing retrieval-augmented generation with long-context LLMs. arXiv preprint arXiv:2406.15319, 2024.

Inference Scaling for RAG

With the advances in long-context LLMs, recent studies also attempt to better leverage the full context-length in retrieval-augmented generation (RAG) tasks.

Studies on inference scaling for RAG mostly focus on scaling the **number of documents** (Ram et al., 2023; Shao et al., 2024; Lee et al., 2024; Xu et al., 2024;) or the **length of documents** (Jiang et al., 2024).

... And RAG performance does not always increase as the retrieved context increases!



O. Ram, Y. Levine, I. Dalmedigos, D. Muhlgay, A. Shashua, K. Leyton-Brown, and Y. Shoham. Incontext retrieval-augmented language models. Transactions of the Association for Computational Linguistics, 11:1316–1331, 2023. R. Shao, J. He, A. Asai, W. Shi, T. Dettmers, S. Min, L. Zettlemoyer, and P. W. Koh. Scaling retrieval based language models with a trillion-token datastore. arXiv preprint arXiv:2407.12854, 2024.

P. Xu, W. Ping, X. Wu, L. McAfee, C. Zhu, Z. Liu, S. Subramanian, E. Bakhturina, M. Shoeybi, and B. Catanzaro. Retrieval meets long context large language models. In ICLR, 2024.

J. Lee, A. Chen, Z. Dai, D. Dua, D. S. Sachan, M. Boratko, Y. Luan, S. M. Arnold, V. Perot, S. Dalmia, et al. Can long-context language models subsume retrieval, RAG, SQL, and more? arXiv preprint arXiv:2406.13121, 2024a.

Z. Jiang, X. Ma, and W. Chen. LongRAG: Enhancing retrieval-augmented generation with long-context LLMs. arXiv preprint arXiv:2406.15319, 2024.

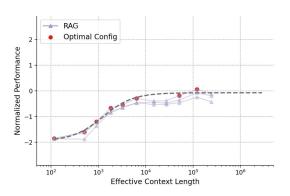
More Comprehensive Inference Scaling for RAG

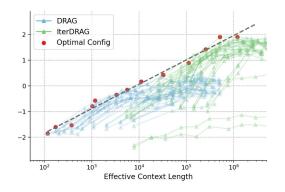
In this work, we conduct a more comprehensive study on inference scaling for RAG.

We study two more strategies to leverage inference computation in RAG tasks:

- Demonstration-Based RAG (DRAG): Adding RAG demonstrations as in-context examples.
- Iterative Demonstration-Based RAG (IterDRAG):
 Iteratively apply demonstration-based RAG to solve more challenging, multi-hop queries.

And we show that when optimally configured, these strategies enable RAG performance to increase (almost) linearly with the order of magnitude of the amount of inference computation.





Definition of "Inference Computation"

In our study, we measure the **inference computation** by "**effective context length**":

- For single-round strategies, this is equivalent to the input context length to the LLM
- For *multi-round* strategies, this is the sum of the input context lengths for every rounds of LLM calls

This aligns well with the pricing model of many commercial LLMs, as the output token number for our tasks is often limited.

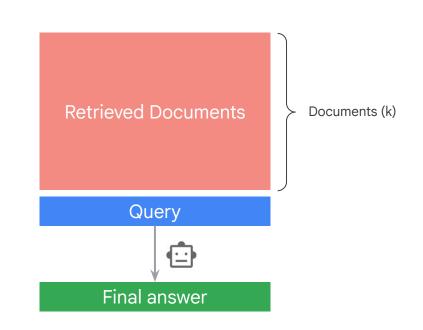
We consider a fixed-budget setting, where users are given a fixed budget of **effective context length** L_{\max}

Vanilla RAG

In the vanilla RAG strategy, a retriever will retrieve k documents based on the query. The retrieved documents and the query are provided to the LLM as input, and the LLM outputs the answer.

To fully leverage the context window of LLMs, we can adjust the following parameter:

Number of documents k



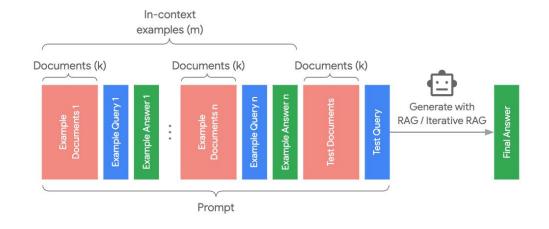
Demonstration-Based RAG (DRAG)

Adding demonstrations as in-context examples, where each demonstration include a complete RAG call: retrieved documents, query and answer.

Ideally, demonstrations allow models to learn how to locate the most relevant information and follow the formatting convention of answers.

This strategy's effective context length can be controlled by 2 parameters

- 1. Number of documents k
- Number of in-context examples m



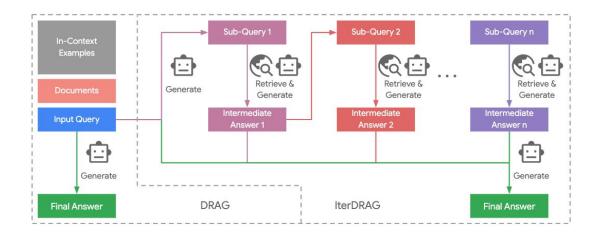
Iterative Demonstration-Based RAG (IterDRAG)

Based on the DRAG strategy, we can further allow the model to iteratively issue sub-queries based on tha answer from previous rounds.

Ideally, the iterative process allow models tackle queries requiring multi-hop reasoning.

This strategy's effective context length can be controlled by 3 parameters

- Number of documents k
- 2. Number of in-context examples m
- 3. Number of iterations *n*



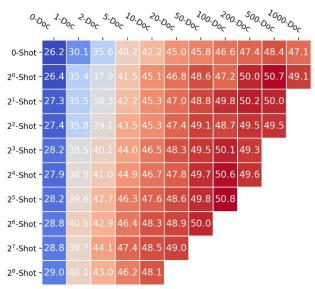
Fixed Budget Optimal Performance

Given a fixed budget L_{max} and a strategy (DRAG, IterDRAG etc.), there can be different configurations satisfying the budget

For example, if the budget is 8k tokens, and the strategy is DRAG, the following configurations can all satisfy the budget:

- Number of documents k=20, Number of demos m=1
- Number of documents k=10, Number of demos m=2
- Number of documents k=5. Number of demos m=4
- ...

We enumerate a set of configuration combination for each strategy.



F1 Performance

Fixed Budget Optimal Performance

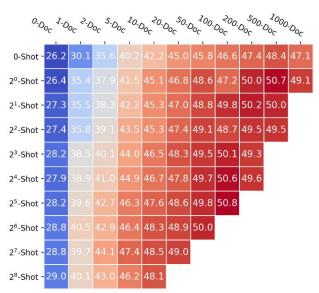
Given a fixed budget L_{max} and a strategy (DRAG, IterDRAG etc.), there can be different configurations satisfying the budget

For example, if the budget is 8k tokens, and the strategy is DRAG, the following configurations can all satisfy the budget:

- Number of documents k=20, Number of demos m=1
- Number of documents k=10, Number of demos m=2
- Number of documents k=5, Number of demos m=4
- ..

We enumerate a set of configuration combination for each strategy.

Assuming we can always find the optimal configuration, how will the performance scale with the budget?



F1 Performance

Fixed Budget Optimal Performance

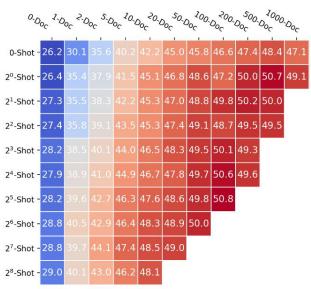
Given a fixed budget L_{max} and a strategy (DRAG, IterDRAG etc.), there can be different configurations satisfying the budget

For example, if the budget is 8k tokens, and the strategy is DRAG, the following configurations can all satisfy the budget:

- Number of documents k=20. Number of demos m=1
- Number of documents k=10, Number of demos m=2
- Number of documents k=5. Number of demos m=4
- ..

We enumerate a set of configuration combination for each strategy.

Among all these configurations, we can find the optimal RAG performance, denoted as $P^*(L_{max})$



F1 Performance

Fixed Budget Optimal Performance

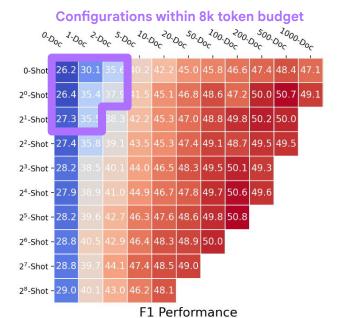
Given a fixed budget L_{max} and a strategy (DRAG, IterDRAG etc.), there can be different configurations satisfying the budget

For example, if the budget is 8k tokens, and the strategy is DRAG, the following configurations can all satisfy the budget:

- Number of documents k=20, Number of demos m=1
- Number of documents k=10, Number of demos m=2
- Number of documents k=5, Number of demos m=4
- ..

We enumerate a set of configuration combination for each strategy.

Among all these configurations, we can find the optimal RAG performance, denoted as $P^*(L_{max})$



Fixed Budget Optimal Performance

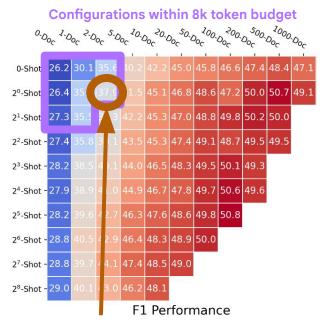
Given a fixed budget L_{max} and a strategy (DRAG, IterDRAG etc.), there can be different configurations satisfying the budget

For example, if the budget is 8k tokens, and the strategy is DRAG, the following configurations can all satisfy the budget:

- Number of documents k=20, Number of demos m=1
- Number of documents k=10, Number of demos m=2
- Number of documents k=5. Number of demos m=4
- ...

We enumerate a set of configuration combination for each strategy.

Among all these configurations, we can find the optimal RAG performance, denoted as $P^*(L_{max})$



Optimal performance within 8k

Fixed Budget Optimal Performance

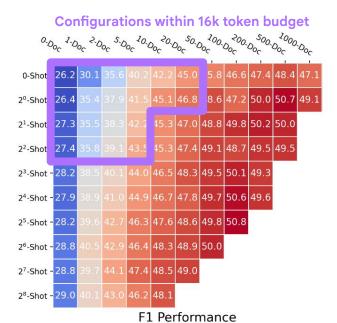
Given a fixed budget L_{max} and a strategy (DRAG, IterDRAG etc.), there can be different configurations satisfying the budget

For example, if the budget is 8k tokens, and the strategy is DRAG, the following configurations can all satisfy the budget:

- Number of documents k=20, Number of demos m=1
- Number of documents k=10, Number of demos m=2
- Number of documents k=5. Number of demos m=4
- ..

We enumerate a set of configuration combination for each strategy.

Among all these configurations, we can find the optimal RAG performance, denoted as $P^*(L_{max})$



Fixed Budget Optimal Performance

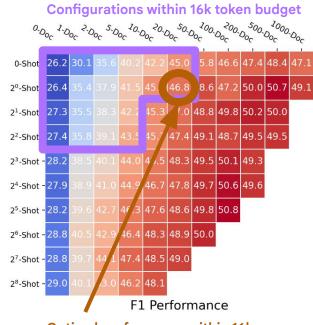
Given a fixed budget L_{max} and a strategy (DRAG, IterDRAG etc.), there can be different configurations satisfying the budget

For example, if the budget is 8k tokens, and the strategy is DRAG, the following configurations can all satisfy the budget:

- Number of documents k=20, Number of demos m=1
- Number of documents k=10, Number of demos m=2
- Number of documents k=5. Number of demos m=4
- ...

We enumerate a set of configuration combination for each strategy.

Among all these configurations, we can find the optimal RAG performance, denoted as $P^*(L_{max})$



Optimal performance within 16k

Fixed Budget Optimal Performance

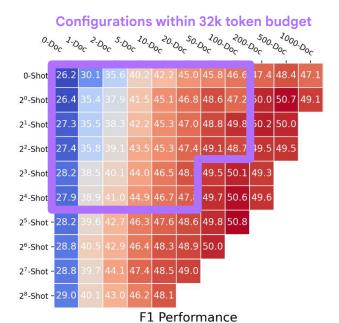
Given a fixed budget L_{max} and a strategy (DRAG, IterDRAG etc.), there can be different configurations satisfying the budget

For example, if the budget is 8k tokens, and the strategy is DRAG, the following configurations can all satisfy the budget:

- Number of documents k=20, Number of demos m=1
- Number of documents k=10, Number of demos m=2
- Number of documents k=5. Number of demos m=4
- ..

We enumerate a set of configuration combination for each strategy.

Among all these configurations, we can find the optimal RAG performance, denoted as $P^*(L_{max})$



Fixed Budget Optimal Performance

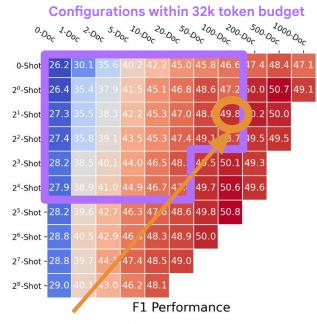
Given a fixed budget L_{max} and a strategy (DRAG, IterDRAG etc.), there can be different configurations satisfying the budget

For example, if the budget is 8k tokens, and the strategy is DRAG, the following configurations can all satisfy the budget:

- Number of documents k=20, Number of demos m=1
- Number of documents k=10, Number of demos m=2
- Number of documents k=5. Number of demos m=4
- ..

We enumerate a set of configuration combination for each strategy.

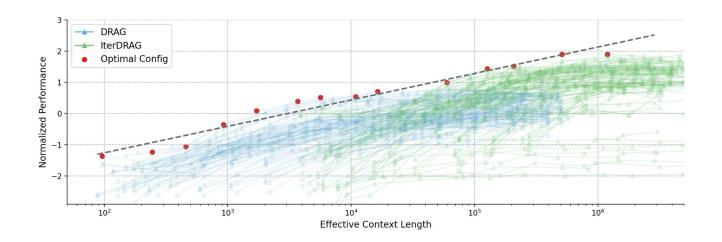
Among all these configurations, we can find the optimal RAG performance, denoted as $P^*(L_{max})$



Optimal performance within 32k

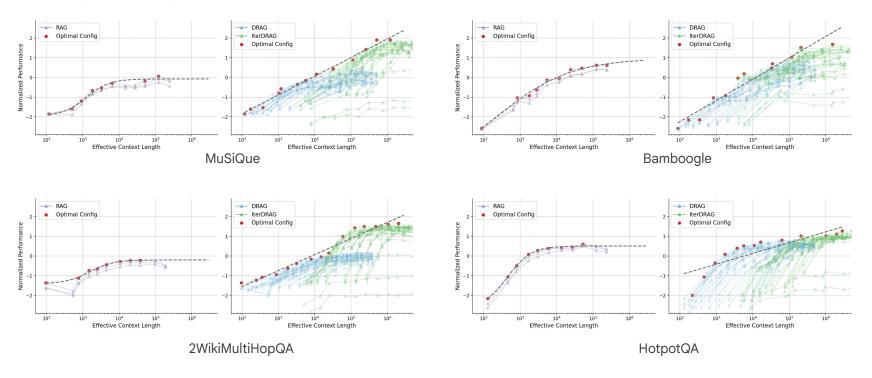
RAG Performance vs. Inference Computation Scale

Plotting $P^*(L_{max})$ with L_{max} for both strategies on all datasets with three metrics (EM, F1, Accuracy) and normalize them.



RAG Performance vs. Inference Computation Scale

Comparing to only scaling the number of document in vanilla RAG on different datasets.



Comparing Strategies

Evaluated on 4 multi-hop open-book question answering datasets.

Baselines:

- Zero-Shot QA (ZS QA): 0 retrieved document,
 0 demonstration
- Many-Shot QA (MS QA): 0 retrieved document, many demonstrations
- RAG: many retrieved documents, 0 demonstration

Optimal performance of different methods with varying maximum effective context lengths.

L_{\max}	Method	Bamboogle			H	IotpotQ	Α	N	/IuSiQu	e	2WikiMultiHopQA		
Lmax	Wicthou	EM	F1	Acc	EM	F1	Acc	EM	F1	Acc	EM	F1 33.5 37.5 49.3 53.5 38.8 50.6 53.7 54.6 50.7 55.3 73.8 55.7 75.2	Acc
1.61	ZS QA	16.8	25.9	19.2	22.7	32.0	25.2	5.0	13.2	6.6	28.3	33.5	30.7
	MS QA	24.0	30.7	24.8	24.6	34.0	26.2	7.4	16.4	8.5	33.2	37.5	34.3
16k	RAG	44.0	54.5	45.6	44.2	57.9	49.2	12.3	21.5	15.3	42.3	F1 33.5 37.5 49.3 53.5 38.8 50.6 53.7 54.6 50.7 55.3 73.8	46.5
	DRAG	44.0	55.2	45.6	45.5	58.5	50.2	14.5	24.6	16.9	45.2	53.5	50.5
	IterDRAG	46.4	56.2	51.2	36.0	47.4	44.4	8.1	17.5	12.2	33.2	38.8	43.8
	RAG	48.8	56.2	49.6	44.2	58.2	49.3	12.3	21.5	15.3	42.9	50.6	48.0
32k	DRAG	48.8	59.2	50.4	46.9	60.3	52.0	15.4	26.0	17.3	45.9	F1 33.5 37.5 49.3 53.5 38.8 50.6 53.7 54.6 50.7 55.3 73.8 55.7 75.2	51.4
	IterDRAG	46.4	56.2	52.0	38.3	49.8	44.4	12.5	23.1	19.7	44.3	54.6	56.8
	RAG	51.2	60.3	52.8	45.7	59.6	50.9	14.0	23.7	16.8	43.1	50.7	48.4
128k	DRAG	52.8	62.3	54.4	47.4	61.3	52.2	15.4	26.0	17.9	47.5	F1 33.5 37.5 49.3 53.5 38.8 50.6 53.7 54.6 50.7 55.3 73.8 55.7 75.2	53.1
	IterDRAG	63.2	74.8	68.8	44.8	59.4	52.8	17.3	28.0	24.5	62.3		74.6
11/	DRAG	56.0	62.9	57.6	47.4	61.3	52.2	15.9	26.0	18.2	48.2	55.7	53.3
1M	IterDRAG	65.6	75.6	68.8	48.7	63.3	55.3	22.2	34.3	30.5	65.7	F1 33.5 37.5 49.3 53.5 38.8 50.6 53.7 54.6 50.7 55.3 73.8 55.7 75.2	76.4
5M	IterDRAG	65.6	75.6	68.8	51.7	64.4	56.4	22.5	35.0	30.5	67.0	75.2	76.9

Comparing Strategies

Evaluated on 4 multi-hop open-book question answering datasets.

Baselines:

- Zero-Shot QA (ZS QA): 0 retrieved document,
 0 demonstration
- Many-Shot QA (MS QA): 0 retrieved document, many demonstrations
- RAG: many retrieved documents, 0 demonstration

Optimal performance of different methods with varying maximum effective context lengths.

L_{\max}	Method	Ва	amboog	gle	Н	IotpotQ	A	N	/luSiQu	e	2Wiki	WikiMultiHopÇ	
-max	Wicthou	EM	F1	Acc	EM	F1	Acc	EM	F1	Acc	EM	F1	Acc
	ZS QA	16.8	25.9	19.2	22.7	32.0	25.2	5.0	13.2	6.6	28.3	33.5	30.7
	MS QA	24.0	30.7	24.8	24.6	34.0	26.2	7.4	16.4	8.5	33.2	37.5	34.3
16k	RAG	44.0	54.5	45.6	44.2	57.9	49.2	12.3	21.5	15.3	42.3	49.3	46.5
	DRAG	44.0	55.2	45.6	45.5	58.5	50.2	14.5	24.6	16.9	45.2	53.5	50.5
	IterDRAG	46.4	56.2	51.2	36.0	47.4	44.4	8.1	17.5	12.2	33.2	F1 33.5 37.5 49.3 53.5 38.8 50.6 53.7 54.6 50.7 55.3 73.8 55.7 75.2	43.8
	RAG	48.8	56.2	49.6	44.2	58.2	49.3	12.3	21.5	15.3	42.9	50.6	48.0
32k	DRAG	48.8	59.2	50.4	46.9	60.3	52.0	15.4	26.0	17.3	45.9	53.7	51.4
	IterDRAG	46.4	56.2	52.0	38.3	49.8	44.4	12.5	23.1	19.7	44.3	54.6	56.8
	RAG	51.2	60.3	52.8	45.7	59.6	50.9	14.0	23.7	16.8	43.1	50.7	48.4
128k	DRAG	52.8	62.3	54.4	47.4	61.3	52.2	15.4	26.0	17.9	47.5	55.3	53.1
	IterDRAG	63.2	74.8	68.8	44.8	59.4	52.8	17.3	28.0	24.5	62.3	73.8	74.6
11/	DRAG	56.0	62.9	57.6	47.4	61.3	52.2	15.9	26.0	18.2	48.2	55.7	53.3
1M	IterDRAG	65.6	75.6	68.8	48.7	63.3	55.3	22.2	34.3	30.5	65.7	75.2	76.4
5M	IterDRAG	65.6	75.6	68.8	51.7	64.4	56.4	22.5	35.0	30.5	67.0	75.2	76.9

DRAG and IterDRAG consistently achieve higher performance than other strategies on different L_{max}

Comparing Strategies

Evaluated on 4 multi-hop open-book question answering datasets.

Baselines:

- Zero-Shot QA (ZS QA): 0 retrieved document,
 0 demonstration
- Many-Shot QA (MS QA): 0 retrieved document, many demonstrations
- RAG: many retrieved documents, 0 demonstration

Optimal performance of different methods with varying maximum effective context lengths.

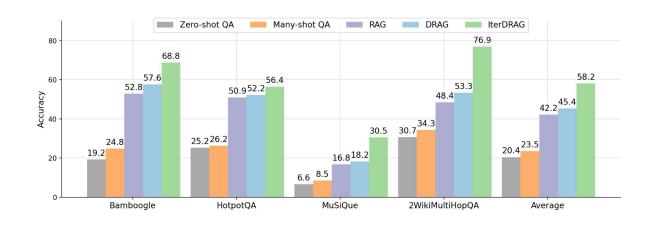
L_{\max}	Method	Ва	amboog	le	Н	lotpotQ	Α	N	⁄IuSiQu	e	2Wiki	MultiHo F1 33.5 37.5 49.3 53.5 38.8 50.6 53.7 54.6 50.7 55.3 73.8 55.7	opQA
-max	Wicthou	EM	F1	Acc	EM	F1	Acc	EM	F1	Acc	EM	F1	Acc
	ZS QA	16.8	25.9	19.2	22.7	32.0	25.2	5.0	13.2	6.6	28.3	33.5	30.7
	MS QA	24.0	30.7	24.8	24.6	34.0	26.2	7.4	16.4	8.5	33.2	37.5	34.3
16k	RAG	44.0	54.5	45.6	44.2	57.9	49.2	12.3	21.5	15.3	42.3	49.3	46.5
	DRAG	44.0	55.2	45.6	45.5	58.5	50.2	14.5	24.6	16.9	45.2	53.5	50.5
	IterDRAG	46.4	56.2	51.2	36.0	47.4	44.4	8.1	17.5	12.2	33.2	F1 33.5 37.5 49.3 53.5 38.8 50.6 53.7 54.6 50.7 55.3 73.8 55.7	43.8
32k	RAG	48.8	56.2	49.6	44.2	58.2	49.3	12.3	21.5	15.3	42.9	50.6	48.0
	DRAG	48.8	59.2	50.4	46.9	60.3	52.0	15.4	26.0	17.3	45.9	53.7	51.4
	IterDRAG	46.4	56.2	52.0	38.3	49.8	44.4	12.5	23.1	19.7	44.3	54.6	56.8
	RAG	51.2	60.3	52.8	45.7	59.6	50.9	14.0	23.7	16.8	43.1	50.7	48.4
128k	DRAG	52.8	62.3	54.4	47.4	61.3	52.2	15.4	26.0	17.9	47.5	55.3	53.1
	IterDRAG	63.2	74.8	68.8	44.8	59.4	52.8	17.3	28.0	24.5	62.3	73.8	74.6
1M	DRAG	56.0	62.9	57.6	47.4	61.3	52.2	15.9	26.0	18.2	48.2	55.7	53.3
11/1	IterDRAG	65.6	75.6	68.8	48.7	63.3	55.3	22.2	34.3	30.5	65.7	75.2	76.4
5M	IterDRAG	65.6	75.6	68.8	51.7	64.4	56.4	22.5	35.0	30.5	67.0	75.2	76.9

DRAG excels with shorter effective context lengths but IterDRAG scales more effectively for longer ones

Comparing Strategies

Comparing the optimal performance with effective context length L_{max} up to 5M

DRAG and IterDRAG can achieve better performance than baselines



DRAG and IterDRAG with the optimal configuration leverage the context window better than RAG.

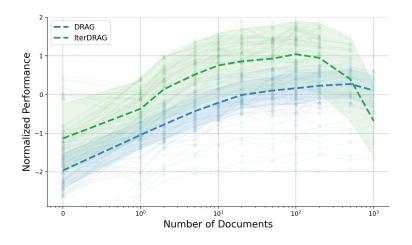
DRAG and IterDRAG with the optimal configuration leverage the context window better than RAG.

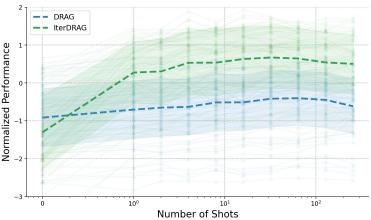
How to find the optimal configuration without brute-force?

RAG Performance vs. Different Parameters

Plotting DRAG and IterDRAG performance vs. individual parameter: number of documents and number of demonstrations.

- 1. Number of documents is more helpful than number of demonstrations, as the curve has steeper slope
- 2. IterDRAG benefits more from increasing number of demonstration





Introducing a Quantitative Model

Denote the parameters of the strategies as $\theta = [k, m, n]^T$ we can formulate the computation allocation model as

$$\sigma^{-1}(P(heta)) pprox (a+b\odot i)^ op \log(heta) + c$$

where

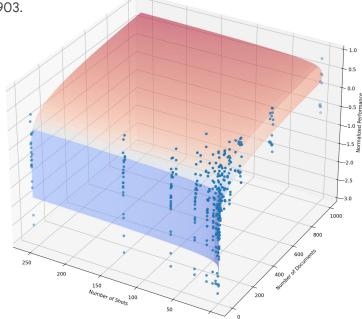
- a, b, c are parameters to learn;
- i is a vector of informativeness that can be easily estimated for each dataset individually;
- σ is a link function and \circ refers to element-wise product.

The informativeness i include informativeness for adding a document, and informativeness for adding a demonstration, estimated by

- i_{doc} = performance difference between k=1 document and k=0 document
- i_{shot} = performance difference between m=1 demo and m=0 demo respectively i_{iter} = 0 as we do not find an accurate way to estimate informativeness of adding an iteration

Estimated Model

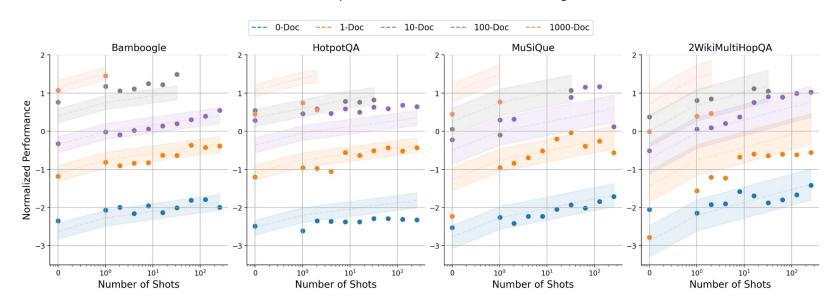
The estimated model has an R² of 0.903.



Estimated Model

The estimated model has an R² of 0.903.

Plot the model estimation (shaded area) vs. the actual performance for a few slices of configurations:



Predict the Optimal Configuration

Evaluate how well the model generalize in two different ways:

- 1. Use 3 datasets to fit the model and predict the optimal on the other one
- Use data from shorter effective context lengths to fit the model and predict the optimal on longer effective context lengths

Generalization to other datasets

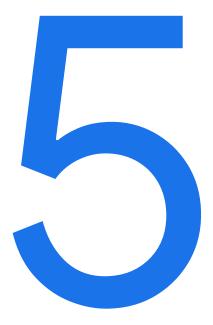
	Bamboogle			HotpotQA			N	/IuSiQu	e	2WikiMultiHopQA		
	EM	F1	Acc	EM	F1	Acc	EM	F1	Acc	EM	F1	Acc
Baseline	49.6	58.8	51.2	46.3	60.2	51.4	14.9	24.7	16.9	46.5	53.7	51.6
Predict	64.0	75.6	68.0	47.8	63.3	55.3	19.3	32.5	29.3	60.8	72.4	74.9
Oracle	65.6	75.6	68.8	48.7	63.3	55.3	22.2	34.3	30.5	65.7	75.2	76.4

Generalization to longer context lengths

	$16k \rightarrow 32k \\$			$32k \rightarrow 128k \\$			12	$28k \rightarrow 1$	lM	$1M \to 5M$		
	EM	F1	Acc	EM	F1	Acc	EM	F1	Acc	EM	F1	Acc
Baseline	37.4	47.6	40.4	39.0	49.5	42.2	39.3	49.3	42.8	44.5	55.4	49.8
Predict	37.4	48.2	41.0	41.2	52.0	45.4	48.0	60.9	56.9	47.9	59.8	55.2
Oracle	39.2	49.8	42.7	46.9	59.0	55.1	50.5	62.1	57.7	51.7	62.6	58.1

^{*}Baseline = always 8-shot and fill the context length with as many documents as possible

Summary



Summary

01

We comprehensively investigate inference scaling for RAG in the regime of long-context LLMs.

We use two inferences scaling strategies: DRAG and IterDRAG.

02

With an enriched toolbox to scale inference computation, we observe that the optimal RAG performance can scale almost linearly with the order of magnitude of inference computation.

This is different from previous observations where the RAG performance tends to saturate or drop when only scaling the number of documents.

03

We develop a quantitative model to predict RAG performance for a specific inference parameter configuration.

The model can be used to find the optimal configuration for a given inference computation budget.

Experiments show reasonable predictive power.

Thank you.