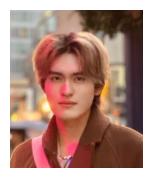
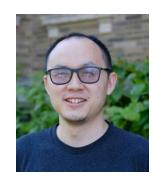
Symmetric Diffusers Learning Discrete Diffusion on Finite Symmetric Groups

Yongxing (Nick) Zhang^{1,3}, Donglin Yang^{2,3}, Renjie Liao^{2,3,4}

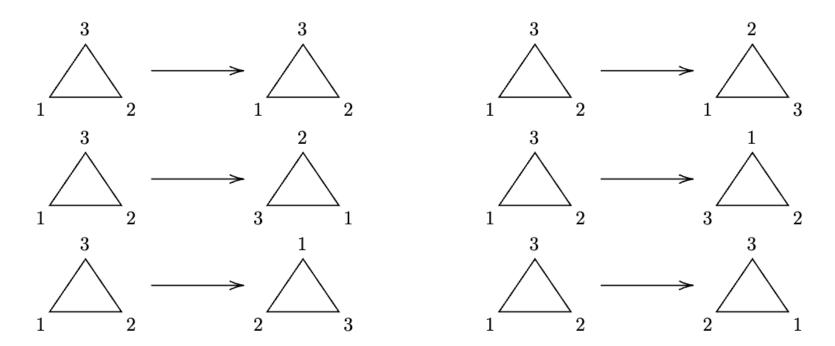




Finite Symmetric Groups

The finite symmetric group S_n :

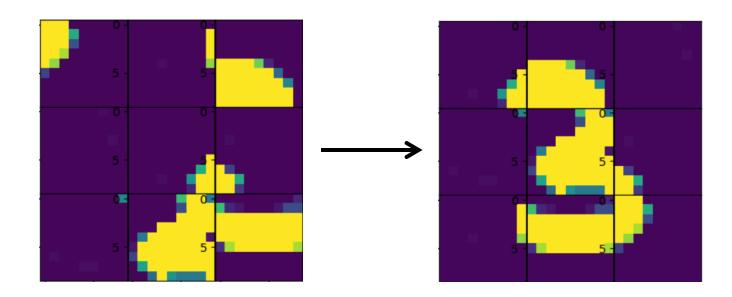
- **Bijections** from a set of *n* elements to itself
- Group operation is **function composition**.



Finite Symmetric Groups

The finite symmetric group S_n :

- **Bijections** from a set of *n* elements to itself
- Group operation is **function composition**.



Learning a Distribution over S_n

Challenges:

• Factorial size;

Learning a Distribution over S_n

Challenges:

- Factorial size;
- **Discrete** structure;

Learning a Distribution over S_n

Challenges:

- Factorial size;
- **Discrete** structure;
- Thus, difficulties in:
 - Designing expressive probabilistic modelling;
 - **Gradient**-based learning.

We use **discrete diffusion** to model over S_n

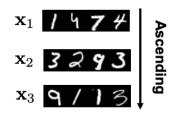
• Decomposing learning a complicated distribution into a sequence of simpler problems.

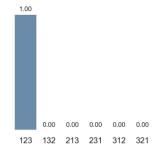
We use **discrete diffusion** to model over S_n

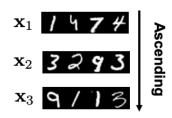
• Decomposing learning a complicated distribution into a sequence of simpler problems.

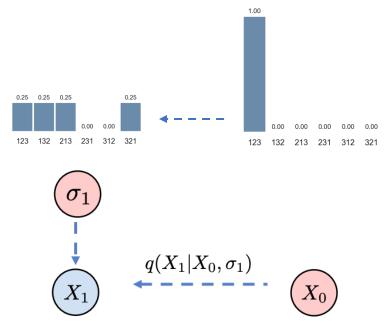
We propose:

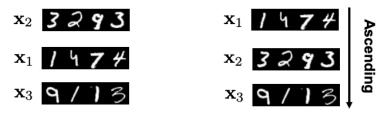
- Shuffling methods as the **forward process** based on theories of random walks on finite groups;
- Transitions and parameterizations for the **reverse process** with provable expressiveness.

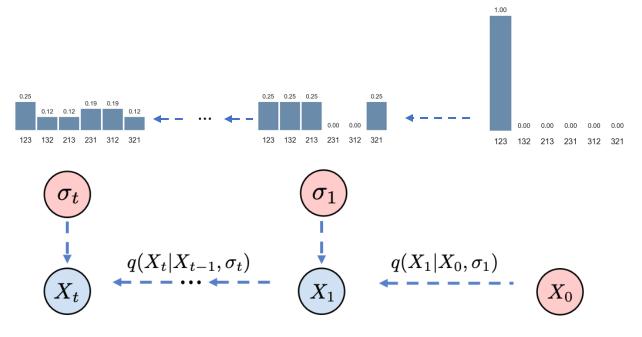


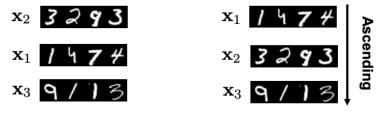


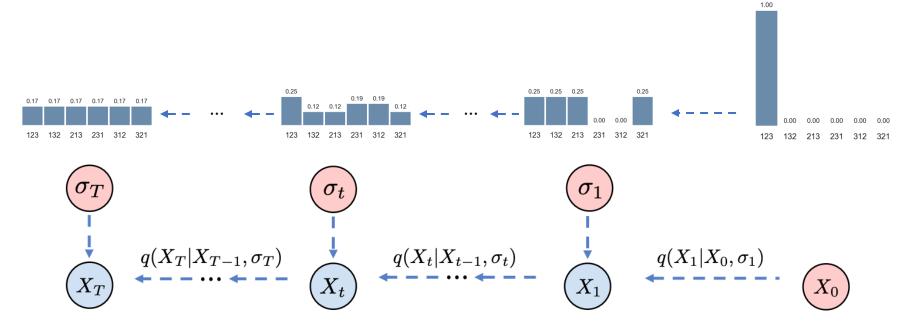


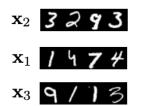


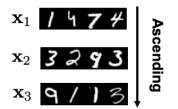


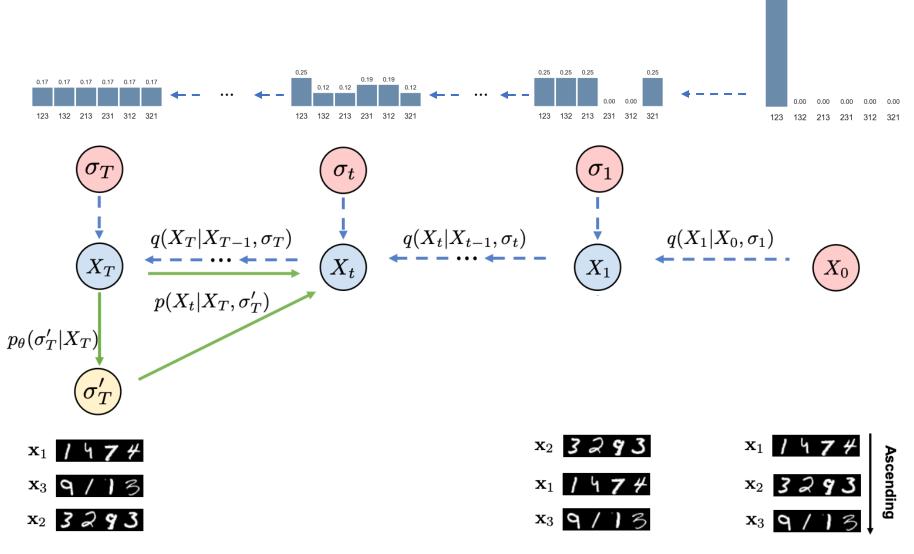


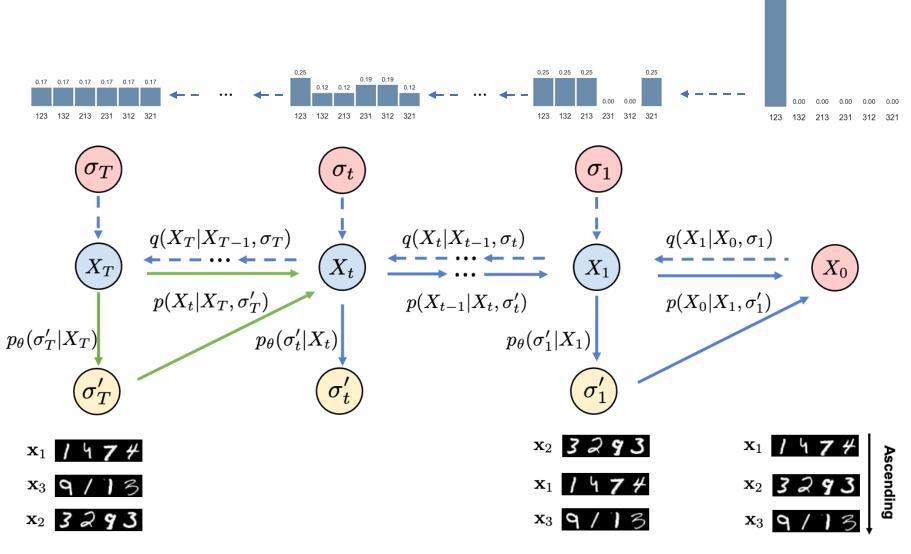












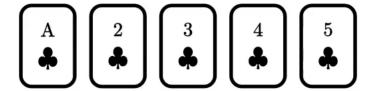
The Forward Process

Shuffling methods:

- Random Transpositions
- Random Insertions
- Riffle Shuffles

Shuffling Methods for the Forward Process

Random Transpositions



Shuffling Methods for the Forward Process

Random Transpositions

$\begin{bmatrix} A \\ \clubsuit \end{bmatrix} \begin{bmatrix} 4 \\ \clubsuit \end{bmatrix} \begin{bmatrix} 3 \\ \clubsuit \end{bmatrix} \begin{bmatrix} 2 \\ \clubsuit \end{bmatrix} \begin{bmatrix} 5 \\ \clubsuit \end{bmatrix}$

Random Insertions

Shuffling Methods for the Forward Process

• **Riffle shuffles:** similar to how we shuffle cards in card games

Sampling the Forward Process

• **DDPM style models:** one step $q(X_t \mid X_0)$.

Sampling the Forward Process

- **DDPM style models:** one step $q(X_t \mid X_0)$.
- Not possible for *most* shuffling methods.
- Run the whole forward Markov chain to obtain the state at time t.

Sampling the Forward Process

- **DDPM style models:** one step $q(X_t \mid X_0)$.
- Not possible for *most* shuffling methods.
- Run the whole forward Markov chain to obtain the state at time t.
- Riffle shuffles do admit efficient sampling at arbitrary time-step.

Mixing Time and the Cut-off Phenomenon

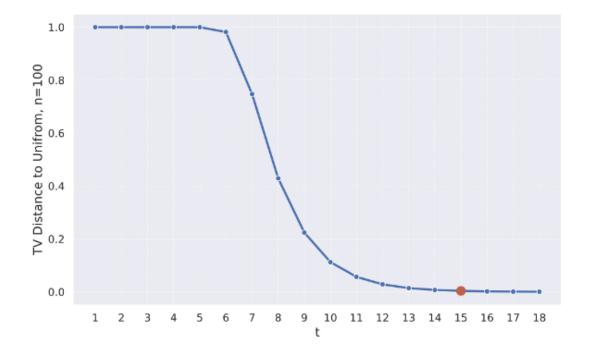
- Stationary distribution: uniform for all shuffling methods.
- **Mixing time:** time until the Markov chain is close in *TV distance* to stationary.

$$D_{ ext{TV}}(p,q) = \sup_{A ext{ measurable}} |p(A) - q(A)| \stackrel{ ext{discrete}}{=} rac{1}{2} \sum_{x} |p(x) - q(x)|$$

Mixing Time and the Cut-off Phenomenon

Cut-off phenomenon:

- TV distance to stationary first stays around 1;
- But then **abruptly drops to close to 0**.



Mixing Time and the Cut-off Phenomenon

Cut-off phenomenon:

- TV distance to stationary first stays around 1;
- But then **abruptly drops to close to 0**.

Shuffling Methods	Asymptotic Cut-off Time
Random Transposition	$\frac{n}{2}\log n$
Random Insertion	$n \log n$
Riffle Shuffle	$\frac{3}{2}\log_2 n$

The Reverse Process

Different distribution parameterizations:

- Inverse Card Shuffling: undo the shuffling;
- *The PL Distribution;*
- *The Generalized PL Distribution.*

Given scores s_1, s_2, \ldots, s_n and a permutation $\sigma \in S_n$:

$$p_{ ext{PL}}(\sigma) = rac{\expig(s_{\sigma(1)}ig)}{\expig(s_{\sigma(1)}ig) + \expig(s_{\sigma(2)}ig) + \cdots + \expig(s_{\sigma(n)}ig)}$$

•

Given scores s_1, s_2, \ldots, s_n and a permutation $\sigma \in S_n$:

$$p_{ ext{PL}}(\sigma) = rac{\expig(s_{\sigma(1)}ig)}{\expig(s_{\sigma(1)}ig) + \expig(s_{\sigma(2)}ig) + \cdots + \expig(s_{\sigma(n)}ig)} \ \cdot rac{\expig(s_{\sigma(2)}ig)}{\expig(s_{\sigma(2)}ig) + \cdots + \expig(s_{\sigma(n)}ig)}$$

Source:

R. L. Plackett. The analysis of permutations. Applied Statistics, 24(2):193 – 202, 1975.

Given scores s_1, s_2, \ldots, s_n and a permutation $\sigma \in S_n$:

$$p_{ ext{PL}}(\sigma) = rac{\expig(s_{\sigma(1)}ig)}{\expig(s_{\sigma(1)}ig) + \expig(s_{\sigma(2)}ig) + \cdots + \expig(s_{\sigma(n)}ig)} \ rac{\expig(s_{\sigma(2)}ig)}{\expig(s_{\sigma(2)}ig) + \cdots + \expig(s_{\sigma(n)}ig)} \ rac{\expig(s_{\sigma(n-1)}ig)}{\expig(s_{\sigma(n-1)}ig) + \expig(s_{\sigma(n)}ig)} \ rac{\expig(s_{\sigma(n)}ig)}{\expig(s_{\sigma(n)}ig)}$$

Source:

R. L. Plackett. The analysis of permutations. Applied Statistics, 24(2):193 – 202, 1975.

Given scores s_1, s_2, \ldots, s_n and a permutation $\sigma \in S_n$:

$$p_{ ext{PL}}(\sigma) = rac{\expig(s_{\sigma(1)}ig)}{\expig(s_{\sigma(1)}ig) + \expig(s_{\sigma(2)}ig) + \cdots + \expig(s_{\sigma(n)}ig)} \ rac{\expig(s_{\sigma(2)}ig)}{\expig(s_{\sigma(2)}ig) + \cdots + \expig(s_{\sigma(n)}ig)} \ rac{\expig(s_{\sigma(n)}ig)}{\expig(s_{\sigma(n-1)}ig) + \expig(s_{\sigma(n)}ig)} \ rac{\expig(s_{\sigma(n)}ig)}{\expig(s_{\sigma(n)}ig)} \ rac{\expig(s_{\sigma(n)}ig)}{\expig(s_{\sigma(n)}ig)}$$

Problem: The PL distribution is not expressive enough, e.g. **cannot** represent a delta distribution.

The Generalized PL (GPL) Distribution

We propose:

• Parameterized using n^2 scores $(s_{ij})_{1 \leq i,j \leq n}$

PL

$$[s_1, s_2, \ldots, s_n]$$

$$egin{bmatrix} s_{1,1} & s_{1,2} & \cdots & s_{1,n} \ s_{2,1} & s_{2,2} & \cdots & s_{2,n} \ dots & dots & \ddots & dots \ s_{n,1} & s_{n,2} & \cdots & s_{n,n} \end{bmatrix}$$

GPL

The Generalized PL (GPL) Distribution

We propose:

- Parameterized using n^2 scores $(s_{ij})_{1 \leq i,j \leq n}$
- Each slot in the permutation uses **different** scores.

$$\begin{aligned} p_{\text{PL}}(\sigma) &= \frac{\exp\left(s_{\sigma(1)}\right)}{\exp\left(s_{\sigma(1)}\right) + \exp\left(s_{\sigma(2)}\right) + \dots + \exp\left(s_{\sigma(n)}\right)} \\ &\cdot \frac{\exp\left(s_{\sigma(1)}\right)}{\exp\left(s_{\sigma(2)}\right) + \dots + \exp\left(s_{\sigma(n)}\right)} \\ &\cdot \dots \\ &\cdot \frac{\exp\left(s_{\sigma(2)}\right)}{\exp\left(s_{\sigma(2)}\right) + \dots + \exp\left(s_{\sigma(n)}\right)} \\ &\cdot \dots \\ &\cdot \frac{\exp\left(s_{\sigma(n-1)}\right)}{\exp\left(s_{\sigma(n-1)}\right) + \exp\left(s_{\sigma(n)}\right)} \\ &\cdot \frac{\exp\left(s_{\sigma(n-1)}\right)}{\exp\left(s_{\sigma(n)}\right)} \\ &\cdot \frac{\exp\left(s_{\sigma(n-1)}\right)}{\exp\left(s_{\sigma(n)}\right)} \\ &\cdot \frac{\exp\left(s_{\sigma(n-1)}\right)}{\exp\left(s_{\sigma(n)}\right)} \\ &\cdot \frac{\exp\left(s_{n-1,\sigma(n-1)}\right)}{\exp\left(s_{n-1,\sigma(n)}\right)} \\ &\cdot \frac{\exp\left(s_{n-1,\sigma(n)}\right)}{\exp\left(s_{n-1,\sigma(n)}\right)} \end{aligned}$$

The Generalized PL (GPL) Distribution

We propose:

- Parameterized using n^2 scores $(s_{ij})_{1 \leq i,j \leq n}$
- Each slot in the permutation uses **different** scores.

Theorem. The reverse process using GPL can model any data distribution.

Training Objective

We maximize the ELBO:

$$\mathbb{E}_{p_{\text{data}}(X_0,\mathcal{X})} \Big[\log p_{\theta}(X_0|\mathcal{X}) \Big] \geq \mathbb{E}_{p_{\text{data}}(X_0,\mathcal{X})q(X_{1:T}|X_0,\mathcal{X})} \left[\log p(X_T|\mathcal{X}) + \sum_{t=1}^T \log \frac{p_{\theta}(X_{t-1}|X_t)}{q(X_t|X_{t-1})} \right].$$

Training Objective

We maximize the ELBO:

$$\mathbb{E}_{p_{\text{data}}(X_0,\mathcal{X})} \left[\log p_{\theta}(X_0|\mathcal{X}) \right] \geq \mathbb{E}_{p_{\text{data}}(X_0,\mathcal{X})q(X_{1:T}|X_0,\mathcal{X})} \left[\log p(X_T|\mathcal{X}) + \sum_{t=1}^T \log \frac{p_{\theta}(X_{t-1}|X_t)}{q(X_t|X_{t-1})} \right].$$

- Not the usual objective in other diffusion models.
- Since $q(X_t \mid X_0)$ and the KL divergences have no analytical form.

For PL and GPL, **merge** some reverse steps:

• Faster and more memory-efficient sampling.

For PL and GPL, merge some reverse steps:

• Faster and more memory-efficient sampling.

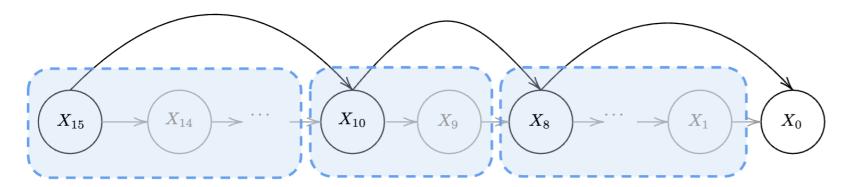
Denoising schedule: $0 \le t_0 < \cdots < t_k = T$ not necessarily consecutive

For PL and GPL, merge some reverse steps:

• Faster and more memory-efficient sampling.

Denoising schedule: $0 \le t_0 < \cdots < t_k = T$ not necessarily consecutive

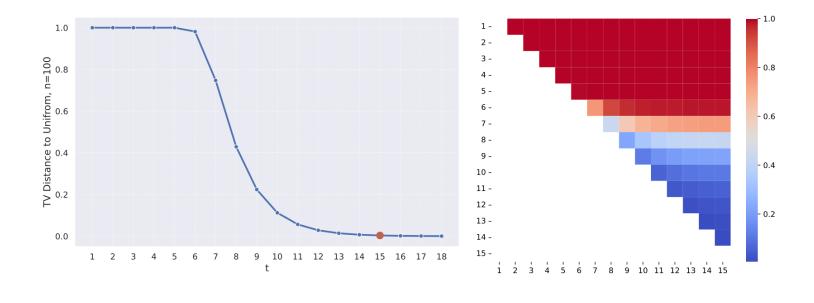
$$\mathcal{L}(\theta) = \mathbb{E}_{p_{\text{data}}(X_0, \mathcal{X})} \mathbb{E}_{q(X_{1:T}|X_0, \mathcal{X})} \left[-\log p(X_T|\mathcal{X}) - \sum_{i=1}^k \log \frac{p_{\theta}(X_{t_{i-1}}|X_{t_i})}{q(X_{t_i}|X_{t_{i-1}})} \right].$$



Intuitions:

- Use the cut-off phenomenon to determine T.
- Merge steps to keep a moderate "jump distance" in terms of TV distance.

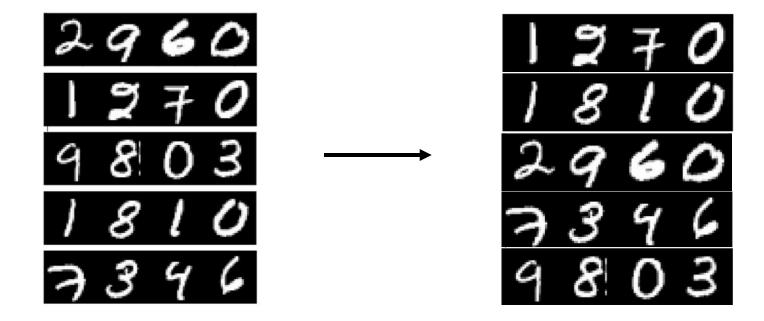
TV to uniform



TV between steps

Sorting 4-Digit MNIST Images

- We have *n* 4-digit images, where each 4-digit image is constructed by concatenating 4 individual images from MNIST.
- **Task:** Sort the *n* numbers.



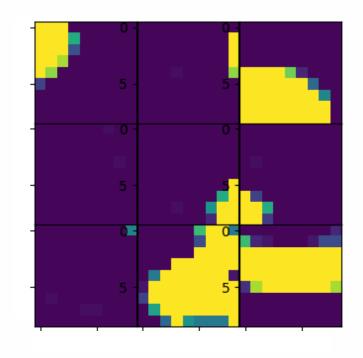
Sorting 4-Digit MNIST Images

- We have *n* 4-digit images, where each 4-digit image is constructed by concatenating 4 individual images from MNIST.
- Task: Sort the *n* numbers.

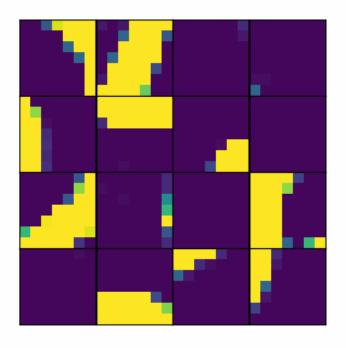
Method	Metrics	Sequence Length								
	11201105	3	5	7	9	15	32	52	100	200
DiffSort	Kendall-Tau ↑	0.930	0.898	0.864	0.801	0.638	0.535	0.341	0.166	0.107
(Petersen	Accuracy (%)	93.8	83.9	71.5	52.2	10.3	0.2	0.0	0.0	0.0
et al., 2022)	Correct (%)	95.8	92.9	90.1	85.2	82.3	61.8	42.8	23.2	15.3
Error-free	Kendall-Tau ↑	0.974	0.967	0.962	0.952	0.938	0.879	0.170	0.140	0.002
DiffSort (Kim	Accuracy (%)	97.7	95.3	92.9	89.6	83.1	57.1	0.0	0.0	0.0
et al., 2024)	Correct (%)	98.4	97.7	97.2	96.3	95.1	90.1	24.2	20.1	0.8
Symmetric	Kendall-Tau↑	0.976	0.967 95.5 97.6	0.959	0.950	0.932	0.858	0.786	0.641	0.453
Diffusers	Accuracy (%)	98.0		92.9	90.0	82.6	55.1	27.4	4.5	0.1
(Ours)	Correct (%)	98.5		96.8	96.1	94.5	88.3	82.1	69.3	52.2

Jigsaw Puzzle

Chop up an image into patches, and recover the original image.



3x3, random transposition



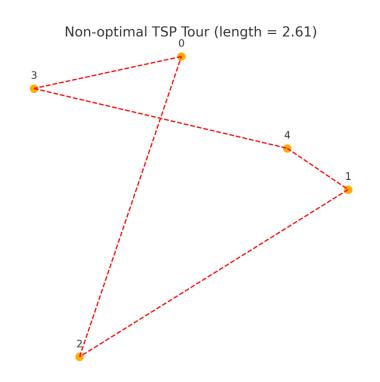
4x4, riffle shuffle

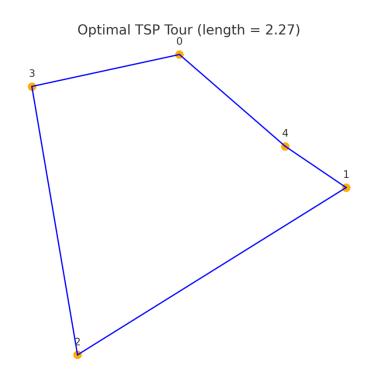
Jigsaw Puzzle

Method	Metrics		N	CIFAR-10				
		2×2	3×3	4×4	5×5	6×6	3×3	4×4
Gumbel-Sinkhorn	Kendall-Tau ↑	0.9984	0.6908	0.3578	0.2430	0.1755	0.5044	0.4016
Network (Mena	Accuracy (%)	99.81	44.65	00.86	0.00	0.00	6.07	0.21
et al., 2018)	Correct (%)	99.91	80.20	49.51	26.94	14.91	43.59	25.31
DiffSort	Kendall-Tau↑	0.9931	0.3054	0.0374	0.0176	0.0095	0.1460	0.0490
(Petersen	Accuracy (%)	99.02	5.56	0.00	0.00	0.00	0.96	0.00
et al., 2022)	Correct (%)	99.50	42.25	10.77	6.39	3.77	27.87	12.27
Error-free	Kendall-Tau↑	0.9899	0.2014	0.0100	0.0034	-0.0021	0.1362	0.0318
DiffSort (Kim	Accuracy (%)	98.62	0.82	0.00	0.00	0.00	0.68	0.00
et al., 2024)	Correct (%)	99.28	32.65	7.40	4.39	2.50	26.75	10.33
Symmetric	Kendall-Tau↑	0.9992	0.8126	0.4859	0.2853	0.1208	0.8363	0.2518
Diffusers	Accuracy (%)	99.88	57.38	1.38	0.00	0.00	70.94	0.64
(Ours)	Correct (%)	99.94	86.16	58.51	37.91	18.54	86.84	34.69

The (Euclidean) Travelling Salesman Problem

• Let $V=\{v_1,\ldots,v_n\}\subseteq\mathbb{R}^2$. We need to find some $\sigma\in S_n$ to minimize the tour length $\sum_{i=1}^n\|v_{\sigma(i)}-v_{\sigma(i+1)}\|_2$, where we let $\sigma(n+1):=\sigma(1)$.





The (Euclidean) Travelling Salesman Problem

• Let $V=\{v_1,\ldots,v_n\}\subseteq\mathbb{R}^2$. We need to find some $\sigma\in S_n$ to minimize the tour length $\sum_{i=1}^n\|v_{\sigma(i)}-v_{\sigma(i+1)}\|_2$, where we let $\sigma(n+1):=\sigma(1)$.

Method		2	TSP-20	TSP-50			
		Tour Length ↓ Optimality Gap (%) ↓		Tour Length ↓	Optimality Gap (%) ↓		
OR Solvers	Concorde LKH-3 2-Opt	3.84 3.84 4.02	0.00 0.00 4.64	5.69 5.69 5.86	0.00 0.00 2.95		
Learning- Based Models	GCN DIFUSCO Ours	3.85* 3.88* 3.85	0.21* 1.07* 0.18	5.87 5.70 5.71	3.10 0.10 0.41		

Thank You!