

REPresentation Alignment for Generation: ICLR Training Diffusion Transformers Is Easier Than You Think

Sihyun Yu

Sangkyung Kwak

Huiwon Jang

Jongheon Jeong Jonathan Huang

Jinwoo Shin

Saining Xie

Introduction: Diffusion/Flow Models

Show state-of-the-art results in recent image/video generation

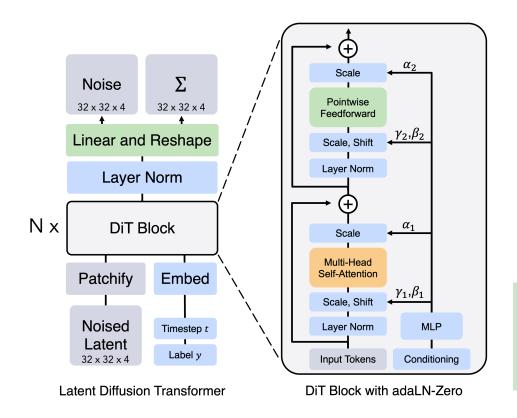
Sora, SD3, Flux, DreamMachine, etc.

Diffusion Transformer (DiT) Training Is Too Slow

DiT: A recent scalable architecture for diffusion models

Issue: Extremely high training cost

e.g.) Requires 1400 epochs on ImageNet to achieve reasonable FIDs

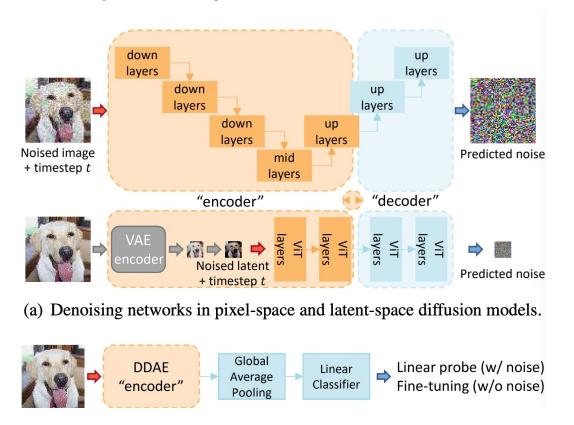


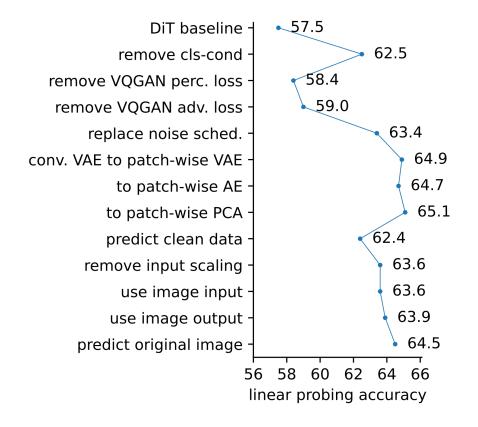
Model	Params(M)	Training Steps	FID ↓
DiT-S	33	400K	68.4
SiT-S	33	400K	57.6
DiT-B	130	400K	43.5
SiT-B	130	400K	33.0
DiT-L	458	400K	23.3
SiT-L	458	400K	18.8
DiT-XL	675	400K	19.5
SiT-XL	675	400K	17.2
DiT-XL	675	7M	9.6
SiT-XL	675	7M	8.3
${ m DiT ext{-}XL}_{ m \ (cfg=1.5)}$ ${ m SiT ext{-}XL}_{ m \ (cfg=1.5)}$	675	7M	2.27
	675	7M	2.06

Generation for Representation Learning

Recent work: Diffusion models learn acceptable representations

- e.g., DDAE [Xiang et al., 2023], l-DAE [Chen et al., 2024]
- But they still leg behind recent state-of-the-art SSL representations





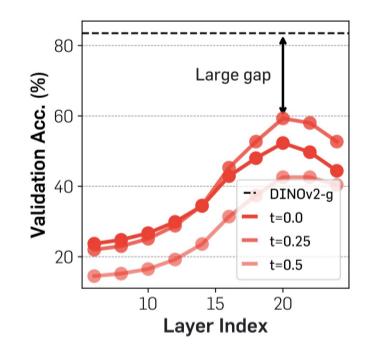
Our focus: Representation for Better Generation

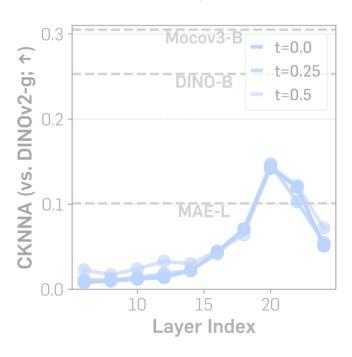
Question: Can good representation improve training efficiency and generation quality of diffusion models?

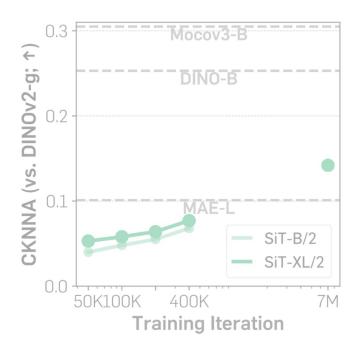
Observations from Pretrained SiT-XL/2 Representations

Three main observations from pretrained SiT-XL/2 representations:

- The model learns reasonably (discriminative) representations
- Representation are partially aligned with state-of-the-art visual encoders
- Alignment improves slowly and inefficiently with increased training/model size







(a) Semantic gap: Linear probing

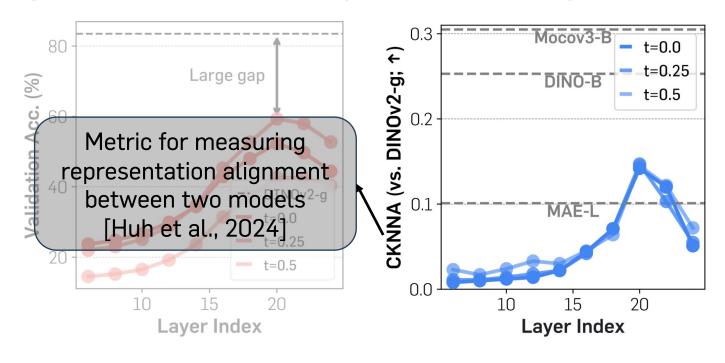
(b) Alignment to DINOv2-g

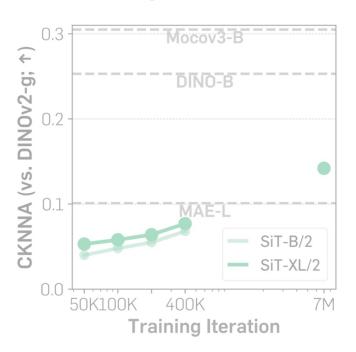
(c) Alignment progression

Observations from Pretrained SiT-XL/2 Representations

Three main observations from pretrained SiT-XL/2 representations:

- The model learns reasonably (discriminative) representations
- Representation are partially aligned with state-of-the-art visual encoders
- Alignment improves slowly and inefficiently with increased training/model size





(a) Semantic gap: Linear probing

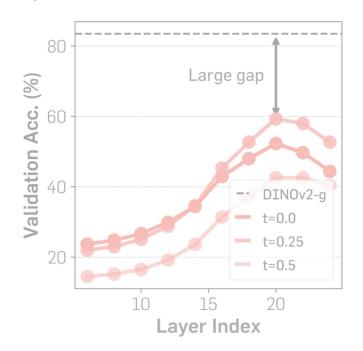
(b) Alignment to DINOv2-g

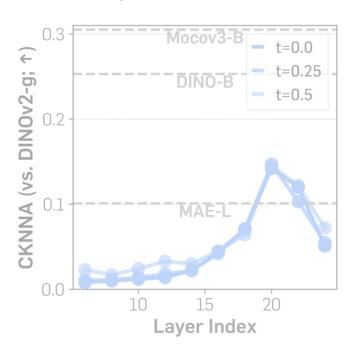
(c) Alignment progression

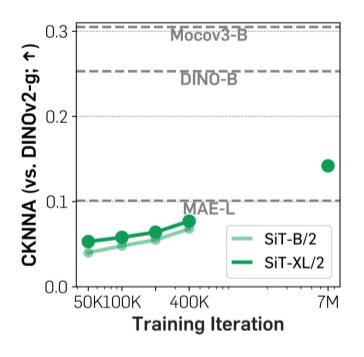
Observations from Pretrained SiT-XL/2 Representations

Three main observations from pretrained SiT-XL/2 representations:

- The model learns reasonably (discriminative) representations
- Representation are partially aligned with state-of-the-art visual encoders
- Alignment improves but inefficiently with increased training/model size







(a) Semantic gap: Linear probing

(b) Alignment to DINOv2-g

(c) Alignment progression

Representation for Better Generation

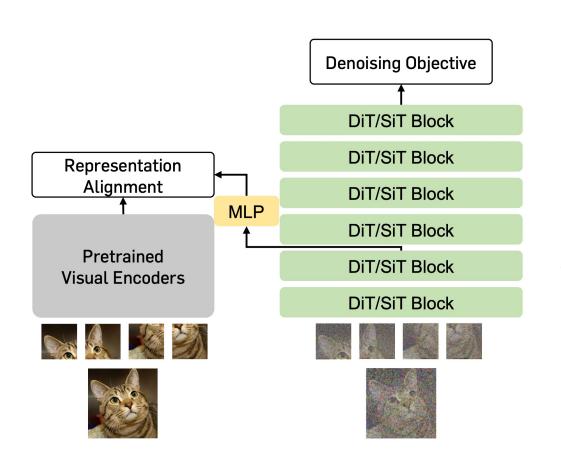
Hypothesis: Model should first learn good "representations" before focusing on "reconstructing" pixel-wise details

- The denoising objective alone might be insufficient to achieve this
- If we can guide representation learning of DiTs, then training becomes much easier

REPA: A Simple Regularization

We guide representation learning via a simple regularization

• REPA: Distills pretrained SSL representations into diffusion representations



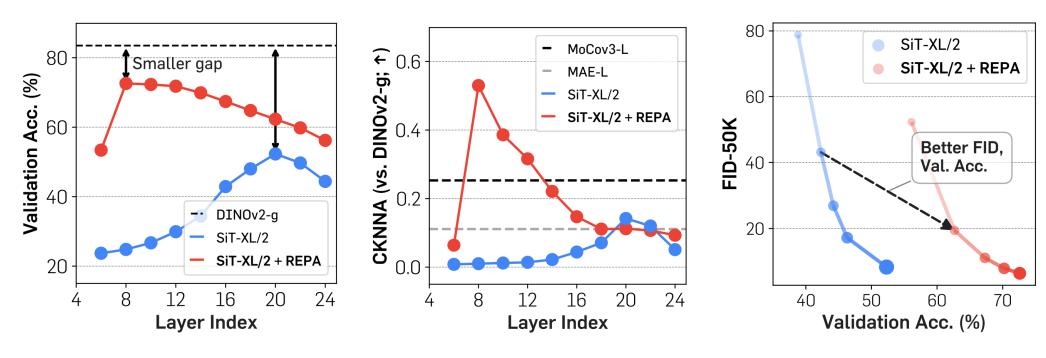
Alignment between the target representation and the projected hidden state

$$-\mathbb{E}_{\mathbf{x}_*, \boldsymbol{\epsilon}, t} \left[\frac{1}{N} \sum_{n=1}^{N} \mathrm{sim}(\mathbf{y}_*^{[n]}, \frac{h_{\phi}(\mathbf{h}_t^{[n]})}{\text{Target MLP Hidden state}}) \right]$$

Bridging the Representation Gap

With REPA, the model shows

- Reduced semantic gap: Improved linear probing performance
- Stronger alignment: Higher CKNNA values
- Improved training dynamics: Better FID and validation accuracy



(a) Semantic gap: Linear probing

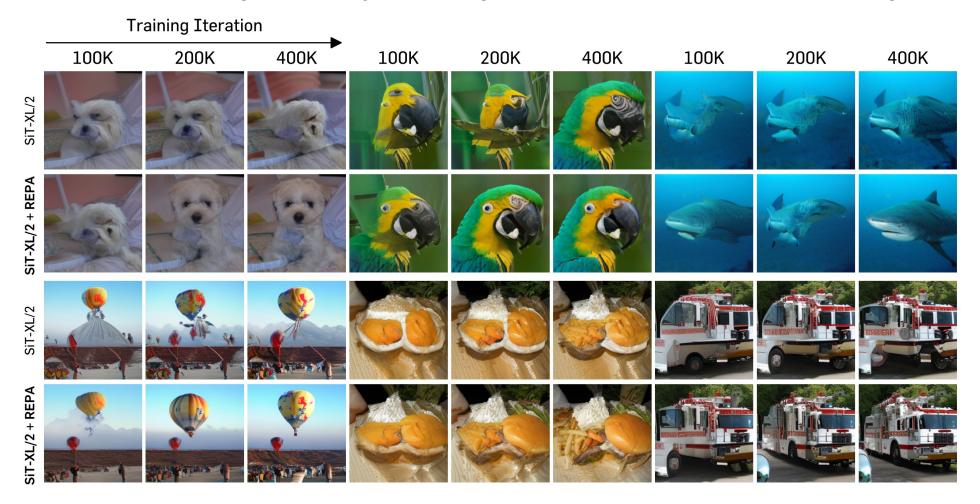
(b) Alignment to DINOv2-g

(c) Acc. and FID progression

REPA Improves Visual Scaling

REPA enables much better visual scaling

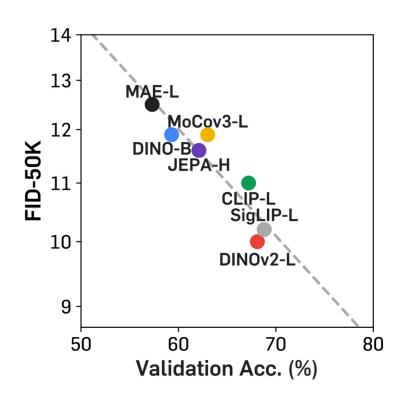
The model produces significantly better generation at the same training iteration



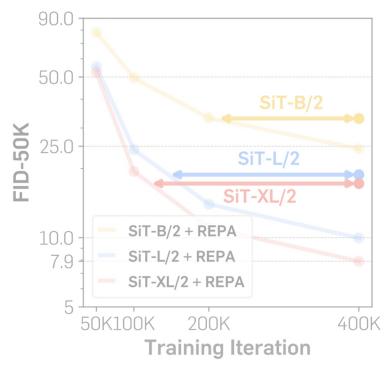
Analysis: Scalability (ImageNet 256x256)

For different target representations:

Higher-quality representations lead to better linear probing results/generation quality



(a) Different visual encoders



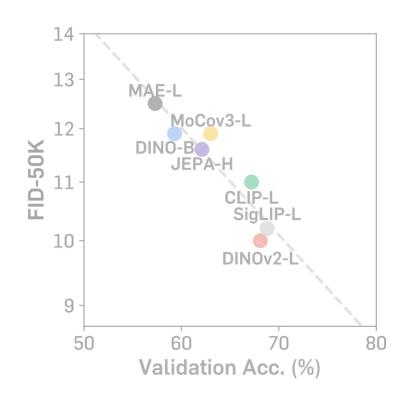
(b) Relative convergence

(c) Validation acc. vs. FID

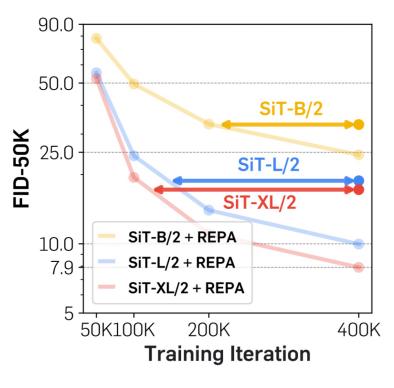
Analysis: Scalability (ImageNet 256x256)

For different model sizes:

Larger model with REPA reaches the same FID level faster as model size increases



(a) Different visual encoders



(b) Relative convergence

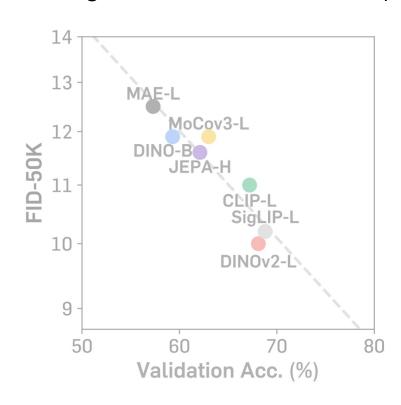


(c) Validation acc. vs. FID

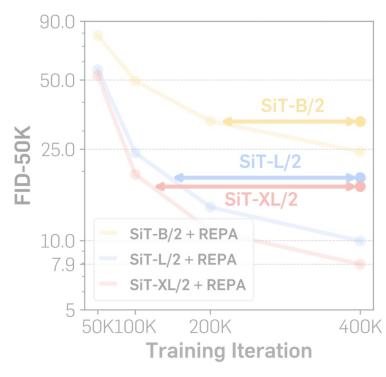
Analysis: Scalability (ImageNet 256x256)

For different model sizes:

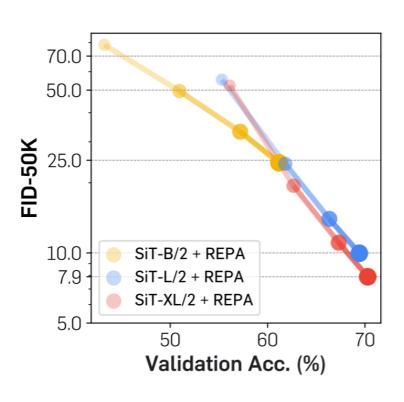
Larger models show steeper performance gain with REPA



(a) Different visual encoders



(b) Relative convergence

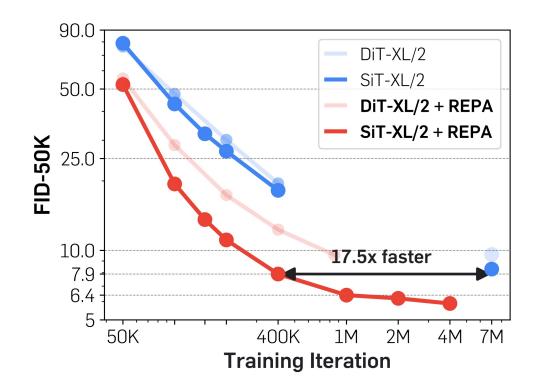


(c) Validation acc. vs. FID

System-level Comparison: ImageNet 256x256

Results on ImageNet 256x256

- Accelerates training by over 17.5×
- Achieves state-of-the-art performance
- With guidance interval, FID=1.42



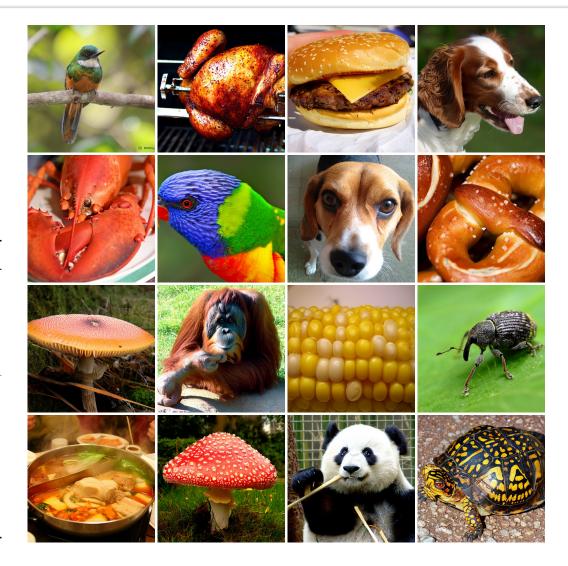
Model	Epochs	FID↓	sFID↓	IS↑	Pre.↑	Rec.↑
Pixel diffusion						
ADM-U	400	3.94	6.14	186.7	0.82	0.52
VDM++	560	2.40	-	225.3	-	-
Simple diffusion	800	2.77	-	211.8	-	-
CDM	2160	4.88	-	158.7	-	-
Latent diffusion, U-Net						
LDM-4	200	3.60	-	247.7	0.87	0.48
Latent diffusion, Tra	nsformer +	- U-Net l	hybrid			
U-ViT-H/2	240	2.29	5.68	263.9	0.82	0.57
DiffiT*	-	1.73	-	276.5	0.80	0.62
MDTv2-XL/2*	1080	1.58	4.52	314.7	0.79	0.65
Latent diffusion, Transformer						
MaskDiT	1600	2.28	5.67	276.6	0.80	0.61
SD-DiT	480	3.23	-	-	-	-
DiT-XL/2	1400	2.27	4.60	278.2	0.83	0.57
SiT-XL/2	1400	2.06	4.50	270.3	0.82	0.59
+ REPA (ours)	200	1.96	4.49	264.0	0.82	0.60
+ REPA (ours)	800	1.80	4.50	284.0	0.81	0.61
+ REPA (ours)*	800	1.42	4.70	305.7	0.80	0.65

System-level Comparison: ImageNet 512x512

Results on a higher-resolution dataset

- Also shows significant improvements
- REPA exceeds the vanilla model's FID >7.5x faster

Model	Epochs	FID↓	sFID↓	IS↑	Pre.↑	Rec.↑
Pixel diffusion						
VDM++	-	2.65	-	278.1	-	-
ADM-G, ADM-U	400	2.85	5.86	221.7	0.84	0.53
Simple diffusion (U-Net)	800	4.28	-	171.0	-	-
Simple diffusion (U-ViT, L)	800	4.53	-	205.3	-	-
Latent diffusion, Transformer						
MaskDiT	800	2.50	5.10	256.3	0.83	0.56
DiT-XL/2	600	3.04	5.02	240.8	0.84	0.54
SiT-XL/2	600	2.62	4.18	252.2	0.84	0.57
+ REPA (ours)	80	2.44	4.21	247.3	0.84	0.56
+ REPA (ours)	100	2.32	4.16	255.7	0.84	0.56
+ REPA (ours)	200	2.08	4.19	274.6	0.83	0.58



System-level Comparison: Text-to-Image Generation

MMDiT

MMDIT+REPA (ours)

Results on MS-COCO

- Shows better image quality
- Improves image-text alignment

Method	Туре	FID
AttnGAN (Xu et al., 2018)	GAN	35.49
DM-GAN (Zhu et al., 2019)	GAN	32.64
VQ-Diffusion (Gu et al., 2022)	Discrete Diffusion	19.75
DF-GAN (Tao et al., 2022)	GAN	19.32
XMC-GAN (Zhang et al., 2021)	GAN	9.33
Frido (Fan et al., 2023)	Diffusion	8.97
LAFITE (Zhou et al., 2021)	GAN	8.12
U-Net (Bao et al., 2023)	Diffusion	7.32
U-ViT-S/2 (Bao et al., 2023)	Diffusion	5.95
U-ViT-S/2 (Deep) (Bao et al., 2023)	Diffusion	5.48
MMDiT (ODE; NFE=50)	Diffusion	6.05
MMDiT+REPA (ODE; NFE=50)	Diffusion	4.73
MMDiT (SDE; NFE=250)	Diffusion	5.30
MMDiT+REPA (SDE; NFE=250)	Diffusion	4.14

A small kitchen with a low ceiling.

A bus pulls over to the A bus is driving in a curb close to an city area with traffic intersection.

A living area with a television and a table.

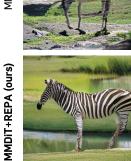
A green train is coming down the tracks.

A group of skiers are preparing to ski down a mountain.

Some food is cooking in a small plate.

A close up of a plate of broccoli and sauce.

A table setting of colorful food.



REPA: Summary & Conclusion

Summary: Representation alignment significantly improves DiT/SiT training We propose REPA = REPresentation Alignment

- 1. Hypothesis: "Good representation" is a key for diffusion transformer training
- 2. Shows great scalability in terms of target representation, model size, etc.
- 3. State-of-the-art FID on ImageNet 256x256 (FID=1.42)
- 4. Significant improvements in higher resolution datasets or text-to-image generation

Paper

Project page

Code