Global Convergence in Neural ODEs: Impact of Activation Functions

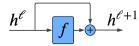
Tianxiang Gao¹, Siyuan Sun², Hailiang Liu², Hongyang Gao²

¹DePaul University ²Iowa State University

ICLR 2025, April 24, 2025

From ResNet to Neural ODEs

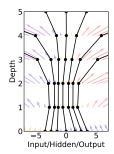
Residual Networks (ResNet):



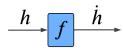
• Residual learning paradigm:

$$oldsymbol{h}_{\ell+1} = oldsymbol{h}_\ell + oldsymbol{f}(oldsymbol{h}_\ell, oldsymbol{ heta}_\ell)$$

• A discrete sequence of transformations:



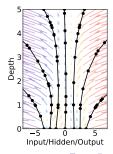
Neural Ordinary Differential Equations (ODEs):



• Infinitely many layers and infinitesimal scaling:

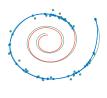
$$\dot{\boldsymbol{h}} = \boldsymbol{f}(\boldsymbol{h}_t, \boldsymbol{\theta}),$$

A vector field continuously refining the state

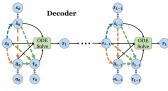


Applications of Neural ODEs

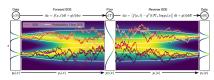
Thanks to their **continuous nature** and **parameter-sharing** efficiency, Neural ODEs have achieved success in a range of applications.



Time Series



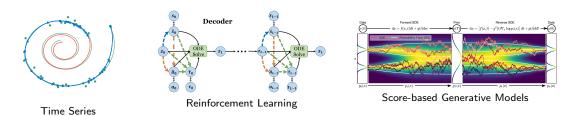
Reinforcement Learning



Score-based Generative Models

Applications of Neural ODEs

Thanks to their **continuous nature** and **parameter-sharing** efficiency, Neural ODEs have achieved success in a range of applications.



Key Question

As a **continuous** model with **shared** parameters, under what conditions does a Neural ODE **converge** under a gradient-based method?

ullet We study a Neural ODE $f_{ heta}(x)$ defined by the **forward ODE** with hidden state h_t :

$$\dot{\boldsymbol{h}}_t = \boldsymbol{W}\phi(\boldsymbol{h}_t), \quad \forall t \in [0, T]$$
 (1)

where $m{W} \in \mathbb{R}^{n \times n}$ and $m{W}_{ij} \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(0, 1/n).$

ullet We study a Neural ODE $f_{m{ heta}}(m{x})$ defined by the **forward ODE** with hidden state $m{h}_t$:

$$\dot{\boldsymbol{h}}_t = \boldsymbol{W}\phi(\boldsymbol{h}_t), \quad \forall t \in [0, T]$$
 (1)

where $\boldsymbol{W} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{W}_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1/n)$.

• Given training data $\{(x_i, y_i)\}_{i=1}^N$, we minimize the squared loss:

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{N} \frac{1}{2} \left[f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right]^2 = \frac{1}{2} \|\boldsymbol{u} - \boldsymbol{y}\|^2,$$
 (2)

where $m{u}$ is the prediction vector with $m{u}_i = f_{ heta}(m{x}_i).$

• We study a Neural ODE $f_{\theta}(x)$ defined by the **forward ODE** with hidden state h_t :

$$\dot{\boldsymbol{h}}_t = \boldsymbol{W}\phi(\boldsymbol{h}_t), \quad \forall t \in [0, T]$$
 (1)

where $\boldsymbol{W} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{W}_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1/n)$.

• Given training data $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^N$, we minimize the squared loss:

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{N} \frac{1}{2} \left[f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right]^2 = \frac{1}{2} \|\boldsymbol{u} - \boldsymbol{y}\|^2,$$
 (2)

where u is the prediction vector with $u_i = f_{\theta}(x_i)$.

ullet Gradients are computed via the **backward ODE** of the adjoint state $oldsymbol{\lambda}_t$:

$$\dot{\boldsymbol{\lambda}}_t = -\operatorname{diag}(\phi'(\boldsymbol{h}_t))\boldsymbol{W}^\top, \quad \forall t \in [0, T]$$
(3)

• We study a Neural ODE $f_{\theta}(x)$ defined by the **forward ODE** with hidden state h_t :

$$\dot{\boldsymbol{h}}_t = \boldsymbol{W}\phi(\boldsymbol{h}_t), \quad \forall t \in [0, T]$$
 (1)

where $\mathbf{W} \in \mathbb{R}^{n \times n}$ and $\mathbf{W}_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1/n)$.

• Given training data $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^N$, we minimize the squared loss:

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{N} \frac{1}{2} \left[f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right]^2 = \frac{1}{2} \|\boldsymbol{u} - \boldsymbol{y}\|^2,$$
 (2)

where u is the prediction vector with $u_i = f_{\theta}(x_i)$.

ullet Gradients are computed via the **backward ODE** of the adjoint state $oldsymbol{\lambda}_t$:

$$\dot{\boldsymbol{\lambda}}_t = -\operatorname{diag}(\phi'(\boldsymbol{h}_t))\boldsymbol{W}^{\top}, \quad \forall t \in [0, T]$$
(3)

Gradient with respect to weights:

$$\nabla_{\boldsymbol{W}} f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \int_{0}^{T} \boldsymbol{\lambda}_{t} \phi(\boldsymbol{h}_{t})^{\top} dt$$
 (4)

ullet We study a Neural ODE $f_{m{ heta}}(m{x})$ defined by the **forward ODE** with hidden state $m{h}_t$:

$$\dot{\boldsymbol{h}}_t = \boldsymbol{W}\phi(\boldsymbol{h}_t), \quad \forall t \in [0, T]$$
 (1)

where $\mathbf{W} \in \mathbb{R}^{n \times n}$ and $\mathbf{W}_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1/n)$.

• Given training data $\{(\boldsymbol{x}_i,y_i)\}_{i=1}^N$, we minimize the squared loss:

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{N} \frac{1}{2} \left[f_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i \right]^2 = \frac{1}{2} \|\boldsymbol{u} - \boldsymbol{y}\|^2,$$
 (2)

where u is the prediction vector with $u_i = f_{\theta}(x_i)$.

• Gradients are computed via the **backward ODE** of the adjoint state λ_t :

$$\dot{\boldsymbol{\lambda}}_t = -\operatorname{diag}(\phi'(\boldsymbol{h}_t))\boldsymbol{W}^\top, \quad \forall t \in [0, T]$$
(3)

Gradient with respect to weights:

$$\nabla_{\boldsymbol{W}} f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \int_{0}^{T} \boldsymbol{\lambda}_{t} \phi(\boldsymbol{h}_{t})^{\top} dt$$
 (4)

Parameters are updated by gradient descent:

$$\boldsymbol{\theta}^{(k+1)} = \boldsymbol{\theta}^{(k)} - \eta \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}^{(k)}) \tag{5}$$

Optimize-then-discretize: Use numerical solvers to compute gradients by solving the continuous forward and backward ODEs.

Optimize-then-discretize: Use numerical solvers to compute gradients by solving the continuous forward and backward ODEs.

Discretize-then-optimize: Discretize the ODE using Euler's method, treating the system as a finite-depth ResNet f_{θ}^L with shared parameters:

$$\boldsymbol{h}^{\ell} = \boldsymbol{h}^{\ell-1} + \Delta t \cdot \boldsymbol{W} \phi(\boldsymbol{h}^{\ell-1}), \text{ where } \Delta t = T/L$$
 (6)

Optimize-then-discretize: Use numerical solvers to compute gradients by solving the continuous forward and backward ODEs.

Discretize-then-optimize: Discretize the ODE using Euler's method, treating the system as a finite-depth ResNet f_{θ}^L with shared parameters:

$$\boldsymbol{h}^{\ell} = \boldsymbol{h}^{\ell-1} + \Delta t \cdot \boldsymbol{W} \phi(\boldsymbol{h}^{\ell-1}), \text{ where } \Delta t = T/L$$
 (6)

Proposition 1

Given $T < \infty$, if ϕ is Lipschitz continuous, then the forward and backward ODEs have unique solutions h_t and λ_t for all $t \in [0,T]$ and $x \in \mathbb{R}^d$, almost surely over random initialization. Moreover, $\lambda_t(x) = \partial f(x;\theta)/\partial h_t$ is the solution to the backward ODE.

Optimize-then-discretize: Use numerical solvers to compute gradients by solving the continuous forward and backward ODEs.

Discretize-then-optimize: Discretize the ODE using Euler's method, treating the system as a finite-depth ResNet f_{θ}^L with shared parameters:

$$\boldsymbol{h}^{\ell} = \boldsymbol{h}^{\ell-1} + \Delta t \cdot \boldsymbol{W} \phi(\boldsymbol{h}^{\ell-1}), \text{ where } \Delta t = T/L$$
 (6)

Proposition 1

Given $T<\infty$, if ϕ is Lipschitz continuous, then the forward and backward ODEs have unique solutions h_t and λ_t for all $t\in [0,T]$ and $x\in \mathbb{R}^d$, almost surely over random initialization. Moreover, $\lambda_t(x)=\partial f(x;\theta)/\partial h_t$ is the solution to the backward ODE.

Proposition 2

If, in addition, ϕ' is Lipschitz continuous, then the following holds a.s. over random initialization:

$$\left\| \nabla_{\boldsymbol{\theta}} f^{L}(\boldsymbol{x}) - \nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}) \right\| \le C \underline{L}^{-1} \tag{7}$$

where C > 0 is a constant depending on the Lipschitz constants, time horizon T, and $\|x\|$.

ullet Previous studies have shown the training dynamics of predictions $oldsymbol{u}^k$ can be approximated by:

$$\boldsymbol{u}^{k+1} - \boldsymbol{y} \approx (\boldsymbol{I} - \eta \boldsymbol{H}^k)(\boldsymbol{u}^k - \boldsymbol{y}), \tag{8}$$

where $\boldsymbol{H}^k \in \mathbb{R}^{N \times N}$ is the NTK Gram matrix:

$$K_{\theta}(\boldsymbol{x}, \bar{\boldsymbol{x}}) := \langle \nabla_{\theta} f(\boldsymbol{x}; \boldsymbol{\theta}), \nabla_{\theta} f(\bar{\boldsymbol{x}}; \boldsymbol{\theta}) \rangle \tag{9}$$

ullet Previous studies have shown the training dynamics of predictions $oldsymbol{u}^k$ can be approximated by:

$$\boldsymbol{u}^{k+1} - \boldsymbol{y} \approx (\boldsymbol{I} - \eta \boldsymbol{H}^k)(\boldsymbol{u}^k - \boldsymbol{y}), \tag{8}$$

where $\mathbf{H}^k \in \mathbb{R}^{N \times N}$ is the NTK Gram matrix:

$$K_{\theta}(\boldsymbol{x}, \bar{\boldsymbol{x}}) := \langle \nabla_{\theta} f(\boldsymbol{x}; \boldsymbol{\theta}), \nabla_{\theta} f(\bar{\boldsymbol{x}}; \boldsymbol{\theta}) \rangle \tag{9}$$

- Neural ODE f_{θ} can be viewed as the limit of a finite-depth ResNet f_{θ}^{L} as $L \to \infty$.
- However, the NTK may depend on the order of limits:

$$\lim_{L \to \infty} \lim_{n \to \infty} f_{\theta}^{L} \neq \lim_{n \to \infty} \lim_{L \to \infty} f_{\theta}^{L}$$
(10)

ullet Previous studies have shown the training dynamics of predictions $oldsymbol{u}^k$ can be approximated by:

$$\boldsymbol{u}^{k+1} - \boldsymbol{y} \approx (\boldsymbol{I} - \eta \boldsymbol{H}^k)(\boldsymbol{u}^k - \boldsymbol{y}), \tag{8}$$

where $\mathbf{H}^k \in \mathbb{R}^{N \times N}$ is the NTK Gram matrix:

$$K_{\theta}(\boldsymbol{x}, \bar{\boldsymbol{x}}) := \langle \nabla_{\theta} f(\boldsymbol{x}; \boldsymbol{\theta}), \nabla_{\theta} f(\bar{\boldsymbol{x}}; \boldsymbol{\theta}) \rangle \tag{9}$$

- Neural ODE f_{θ} can be viewed as the limit of a finite-depth ResNet f_{θ}^{L} as $L \to \infty$.
- However, the NTK may depend on the order of limits:

$$\lim_{L \to \infty} \lim_{n \to \infty} f_{\theta}^{L} \neq \lim_{n \to \infty} \lim_{L \to \infty} f_{\theta}^{L} \tag{10}$$

Illustrative example:

$$a_{n,\ell} := \frac{n}{\ell+n}, \quad \lim_{\ell \to \infty} \lim_{n \to \infty} a_{n,\ell} = 1, \quad \lim_{n \to \infty} \lim_{\ell \to \infty} a_{n,\ell} = 0$$
 (11)

ullet Previous studies have shown the training dynamics of predictions $oldsymbol{u}^k$ can be approximated by:

$$\boldsymbol{u}^{k+1} - \boldsymbol{y} \approx (\boldsymbol{I} - \eta \boldsymbol{H}^k)(\boldsymbol{u}^k - \boldsymbol{y}), \tag{8}$$

where $\mathbf{H}^k \in \mathbb{R}^{N \times N}$ is the NTK Gram matrix:

$$K_{\theta}(\boldsymbol{x}, \bar{\boldsymbol{x}}) := \langle \nabla_{\theta} f(\boldsymbol{x}; \boldsymbol{\theta}), \nabla_{\theta} f(\bar{\boldsymbol{x}}; \boldsymbol{\theta}) \rangle \tag{9}$$

- Neural ODE f_{θ} can be viewed as the limit of a finite-depth ResNet f_{θ}^{L} as $L \to \infty$.
- However, the NTK may depend on the order of limits:

$$\lim_{L \to \infty} \lim_{n \to \infty} f_{\theta}^{L} \neq \lim_{n \to \infty} \lim_{L \to \infty} f_{\theta}^{L} \tag{10}$$

• Illustrative example:

$$a_{n,\ell} := \frac{n}{\ell+n}, \quad \lim_{\ell \to \infty} \lim_{n \to \infty} a_{n,\ell} = 1, \quad \lim_{n \to \infty} \lim_{\ell \to \infty} a_{n,\ell} = 0$$
 (11)

Theorem 1 (NTK Convergence)

Suppose ϕ and ϕ' are Lipschitz. Then as width $n \to \infty$, the NTK K_{θ} of the Neural ODE f_{θ} converges almost surely to a deterministic kernel:

$$K_{\theta} \to K_{\infty}, \quad \text{as } n \to \infty,$$
 (12)

where K_{∞} equals the limit of NTKs K_{∞}^{L} for ResNets as depth $L \to \infty$.

Empirical Validation of Well-Posedness and NTK Convergence

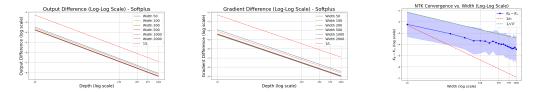


Figure: Comparison of Neural ODEs and ResNets: With Softplus (smooth), output, gradient, and NTK differences decay as 1/L.

Empirical Validation of Well-Posedness and NTK Convergence

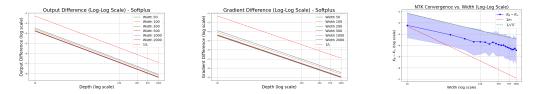


Figure: Comparison of Neural ODEs and ResNets: With Softplus (smooth), output, gradient, and NTK differences decay as 1/L.

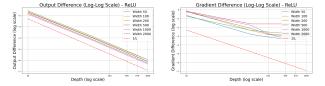


Figure: Comparison of Neural ODEs and ResNets with ReLU (non-smooth) activations: Output difference shows 1/L convergence, while gradient difference remains constant as depth L increases.

• Previous works have shown a strictly positive definite (SPD) limiting NTK K_{∞} is sufficient to guarantee global convergence under gradient descent.

- ullet Previous works have shown a strictly positive definite (SPD) limiting NTK K_{∞} is sufficient to guarantee global convergence under gradient descent.
- However, the SPD property of the finite-depth NTK K_{∞}^L does not ensure that K_{∞} remains SPD as $L \to \infty$. The spectrum may degenerate with increasing depth.

- ullet Previous works have shown a strictly positive definite (SPD) limiting NTK K_{∞} is sufficient to guarantee global convergence under gradient descent.
- However, the SPD property of the finite-depth NTK K_{∞}^L does not ensure that K_{∞} remains SPD as $L \to \infty$. The spectrum may degenerate with increasing depth.
- The NTK of the Neural ODE admits an integral form:

$$K_{\infty} = \Sigma^{T,T} + \int_{0}^{T} \int_{0}^{T} \Sigma^{t,s} K^{t,s} dt ds + \Sigma^{0,0} K^{0,0}$$

where $\Sigma^{t,s}$ and $K^{t,s}$ encode covariance and kernel terms at time t,s.

- ullet Previous works have shown a strictly positive definite (SPD) limiting NTK K_{∞} is sufficient to guarantee global convergence under gradient descent.
- However, the SPD property of the finite-depth NTK K_{∞}^L does not ensure that K_{∞} remains SPD as $L \to \infty$. The spectrum may degenerate with increasing depth.
- The NTK of the Neural ODE admits an integral form:

$$K_{\infty} = \Sigma^{T,T} + \int_{0}^{T} \int_{0}^{T} \Sigma^{t,s} K^{t,s} dt ds + \Sigma^{0,0} K^{0,0}$$

where $\Sigma^{t,s}$ and $K^{t,s}$ encode covariance and kernel terms at time t,s.

Proposition 3

Suppose ϕ and ϕ' are Lipschitz continuous. If ϕ is nonlinear and non-polynomial, then the limiting NTK K_{∞} is strictly positive definite.

Global Convergence for Neural ODEs

Assumption 1

Let $\{x_i, y_i\}_{i=1}^N$ be a training set. Assume

- **1** Training set: $x_i \in \mathbb{S}^{d-1}$ and $x_i \neq x_j$ for all $i \neq j$; $|y_i| = \mathcal{O}(1)$,
- 2 Smoothness: ϕ and ϕ' are Lipschitz continuous, respectively,
- **1** Nonlinearity: ϕ is nonlinear and non-polynomial.

Global Convergence for Neural ODEs

Assumption 1

Let $\{x_i, y_i\}_{i=1}^N$ be a training set. Assume

- **1** Training set: $\mathbf{x}_i \in \mathbb{S}^{d-1}$ and $\mathbf{x}_i \neq \mathbf{x}_j$ for all $i \neq j$; $|y_i| = \mathcal{O}(1)$,
- **2** Smoothness: ϕ and ϕ' are Lipschitz continuous, respectively,
- **3** Nonlinearity: ϕ is nonlinear and non-polynomial.

Theorem 2

Suppose Assumption 1 holds and the learning rate η is chosen s.t. $0 < \eta \le 1/\|\boldsymbol{X}\|^2$. Then for any $\delta > 0$, there exists a natural number n_{δ} s.t. for all widths $n \ge n_{\delta}$ the following results hold with probability at least $1 - \delta$ over random initialization:

• The parameters θ^k stay in a neighborhood of θ^0 , i.e.,

$$\|\boldsymbol{\theta}^k - \boldsymbol{\theta}^0\| \le C \|\boldsymbol{X}\| \sqrt{L(\boldsymbol{\theta}_0)} / \lambda_0. \tag{13}$$

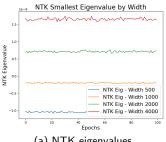
 $oldsymbol{0}$ The loss function $L(oldsymbol{ heta}_k)$ consistently decreases to zero at an exponential rate, i.e.,

$$L(\boldsymbol{\theta}_k) \le (1 - \eta \boldsymbol{\lambda}_0)^k L(\boldsymbol{\theta}_0), \tag{14}$$

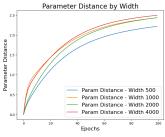
where $\lambda_0 := \lambda_{\min}(K_{\infty}) > 0$, and the constant C > 0 only depends on Lipschitz coefficients and T.

Empirical Validation of Global Convergence

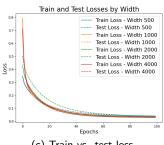
• We examine NTK spectra, parameter stability, and loss convergence across different model widths.



(a) NTK eigenvalues



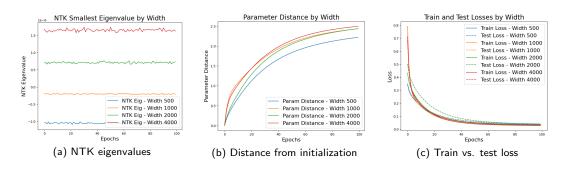
Distance from initialization



(c) Train vs. test loss

Empirical Validation of Global Convergence

• We examine NTK spectra, parameter stability, and loss convergence across different model widths.



Additional experiments: time horizon effects, quadratic activations, solver comparisons (adaptive
vs. fixed step). See the poster or paper for details.

Future Work & Collaboration

Open Directions

- Convergence Rates: Derive explicit rates as width/depth grow in Neural ODEs.
- Solver Design: Design efficient ODE solvers guided by gradient alignment conditions.
- Beyond GD: Explore SGD, momentum, and adaptive optimization methods.
- Feature Learning: Analyze training and generalization beyond the lazy training regime.
- Broader Models: Extend theory to Transformers, ResNets, and state-space models.

Contact Information:

- Email: tgao9@depaul.edu
- Web: https://gaotx-cs.github.io/