

# Geometry of Neural Reinforcement Learning in Continuous State and Action Spaces

ICLR 2025 ORAL

Saket Tiwari (on job market for PostDoc)

**Omer Gottesman** 

George Konidaris

**April**, 2025

## Data Geometry and Manifold Hypothesis

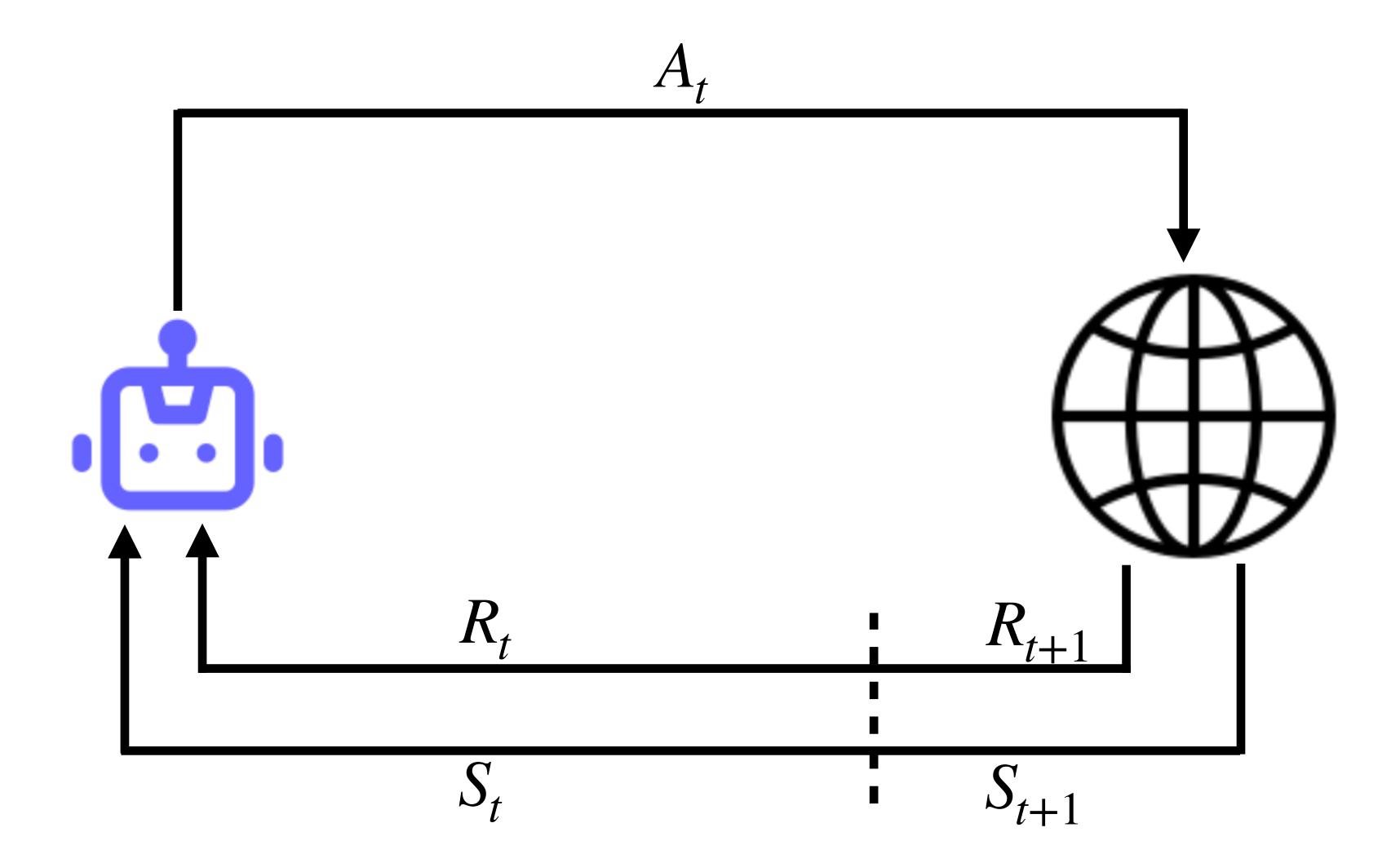
Tenenbaum, et al 2000

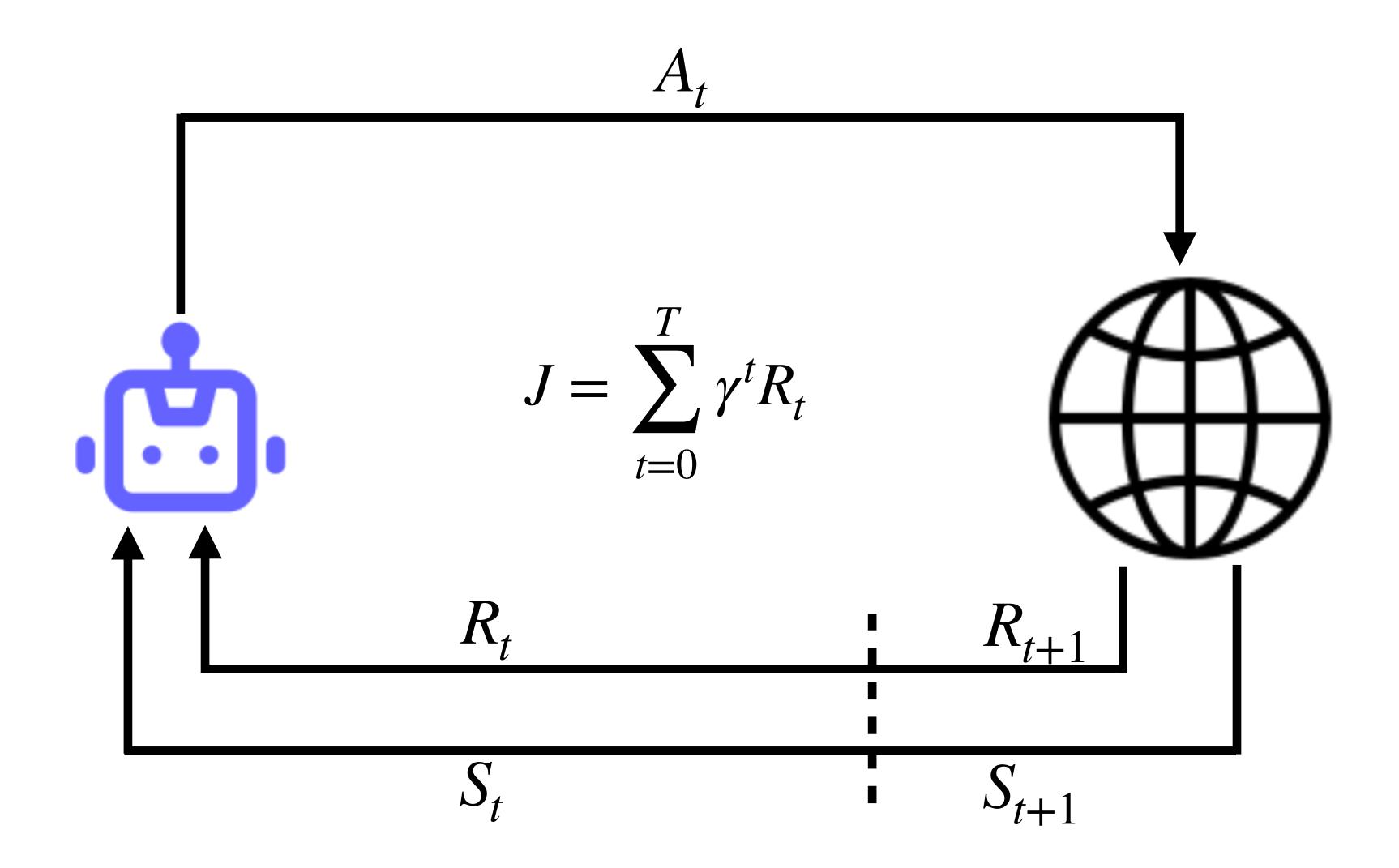
## The Manifold Hypothesis

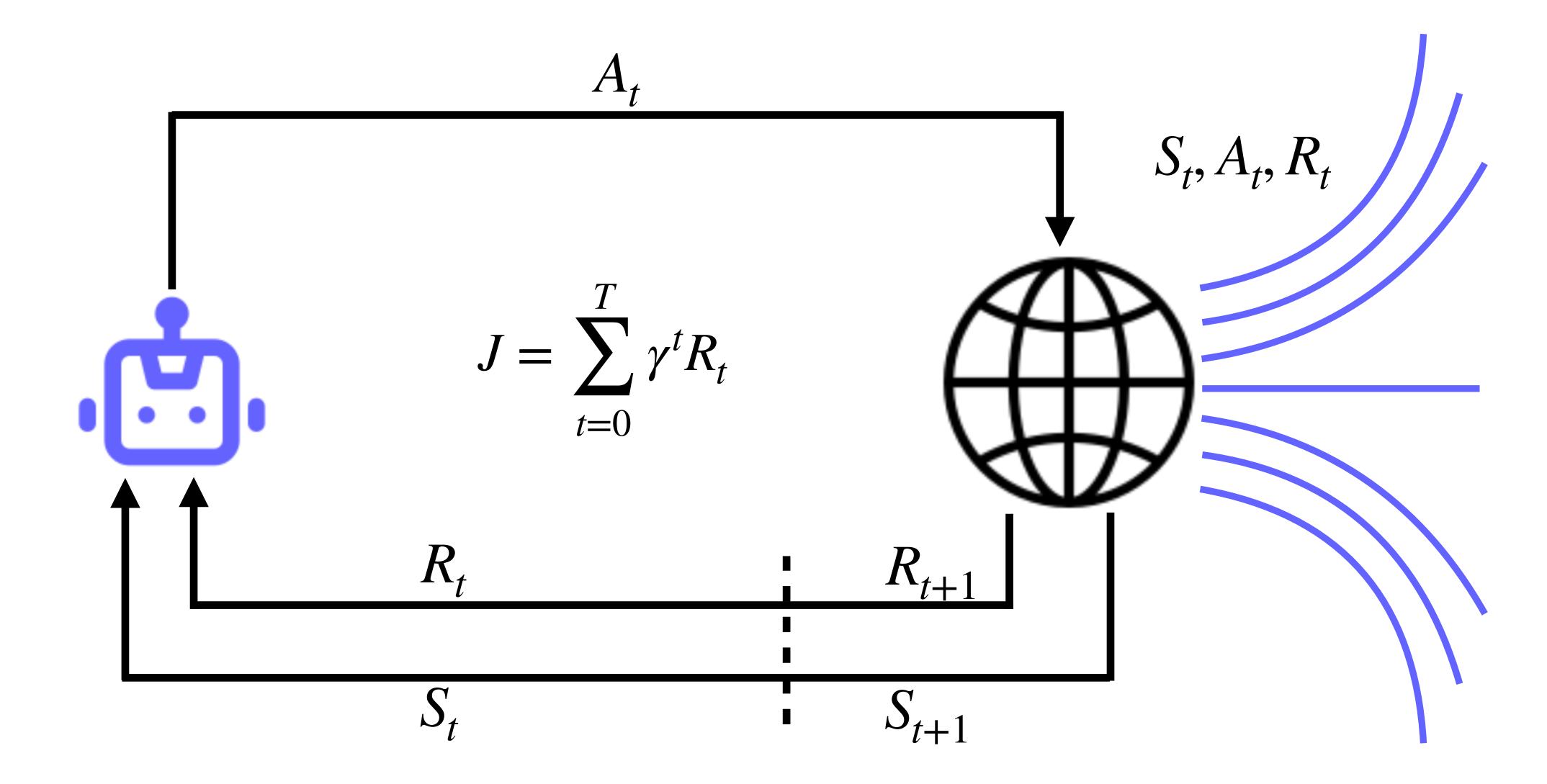
Natural data lies close to lower-dimensional manifolds in its embedding space.

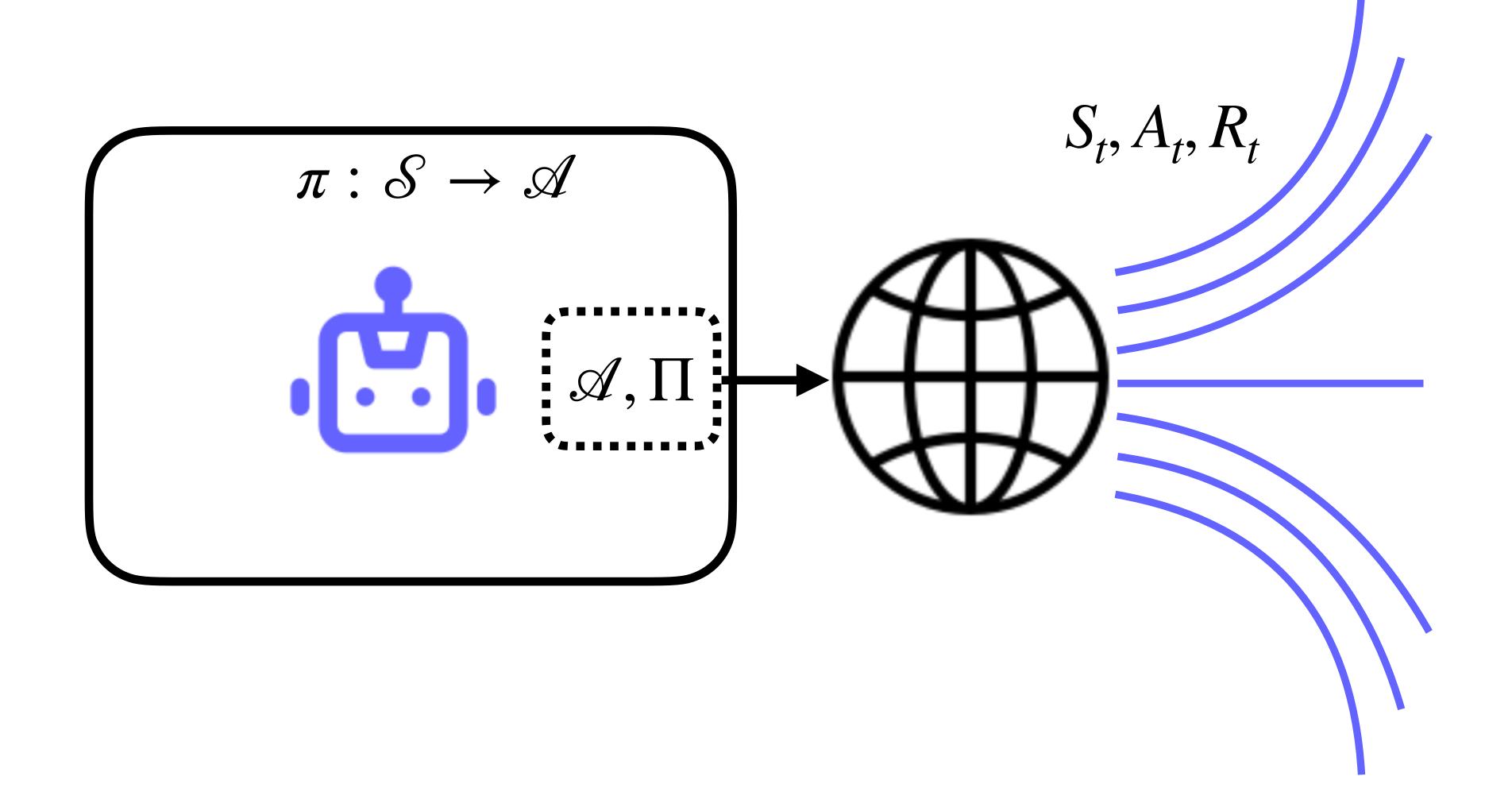


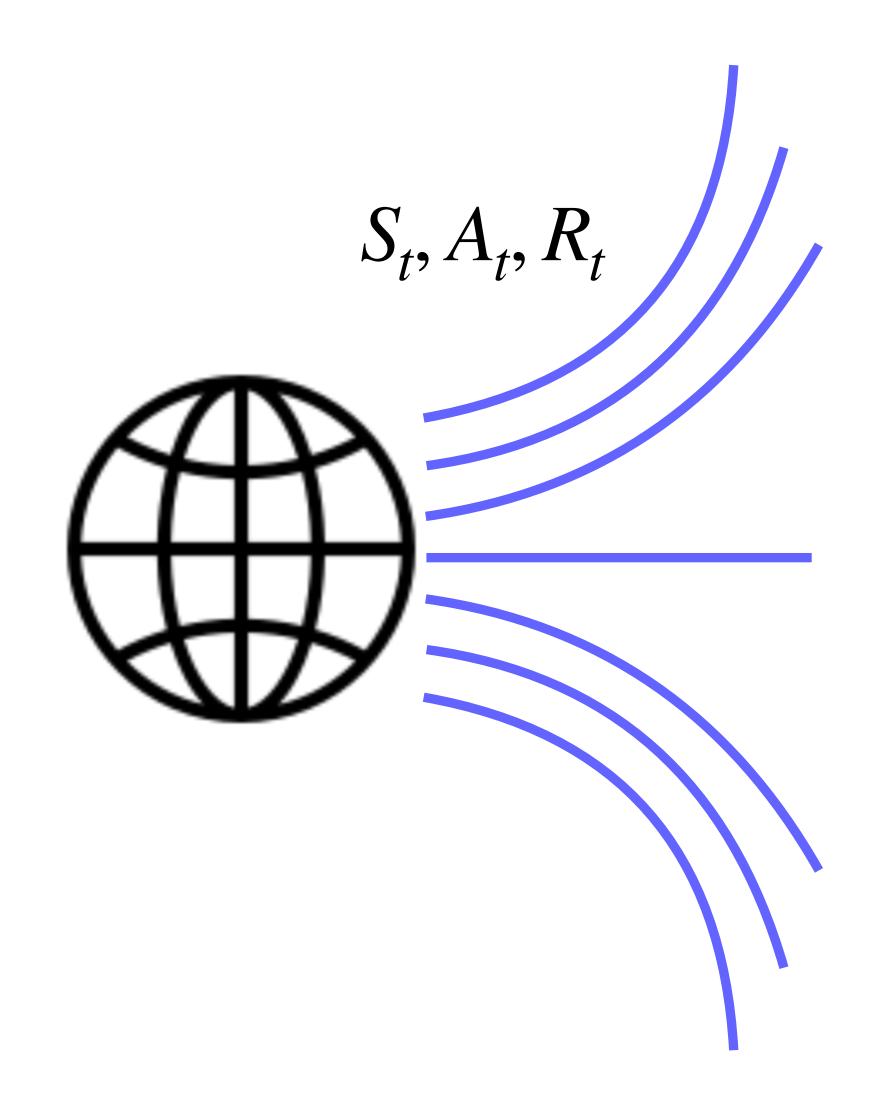
2D Manifolds embedded in 3D spaces: Torus, Sphere and Cylinder

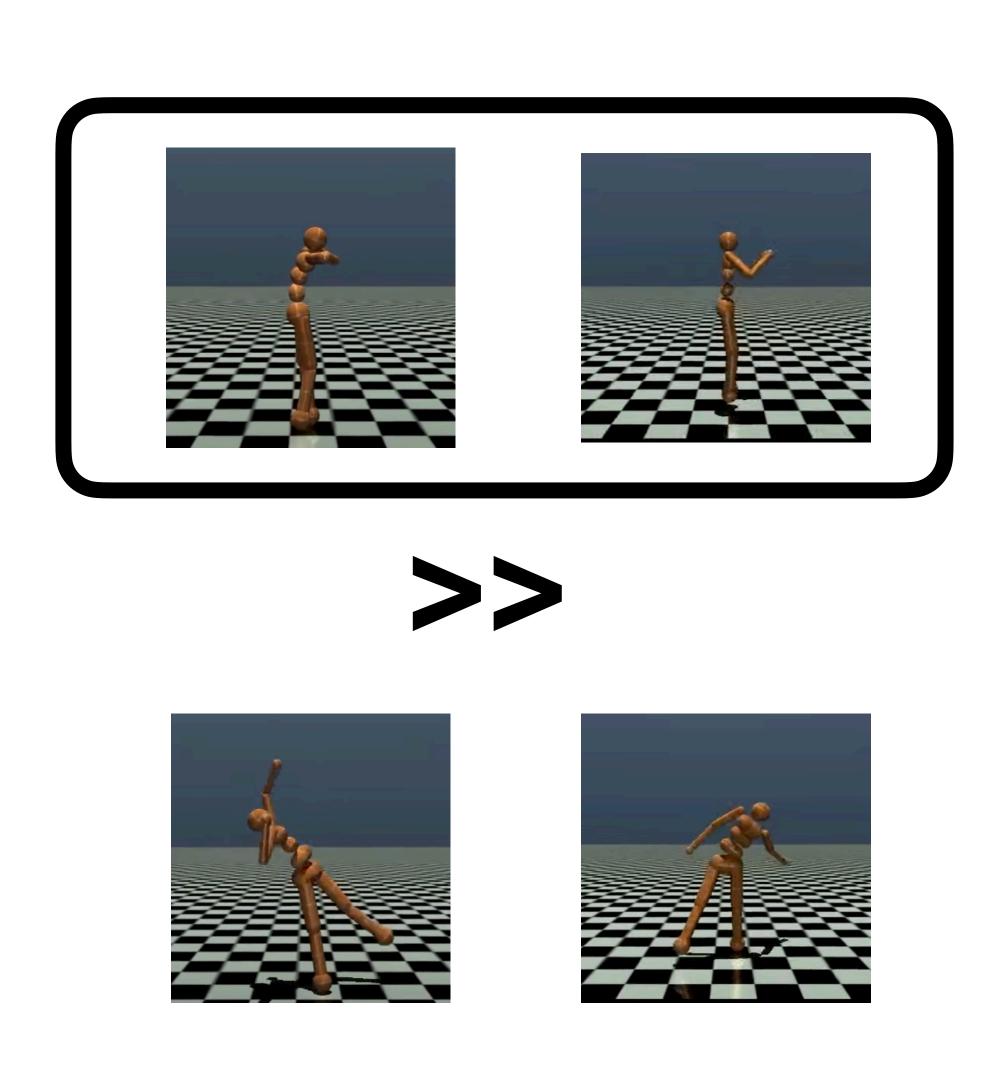












# Reinforcement Learning: Policy Gradient Ascent

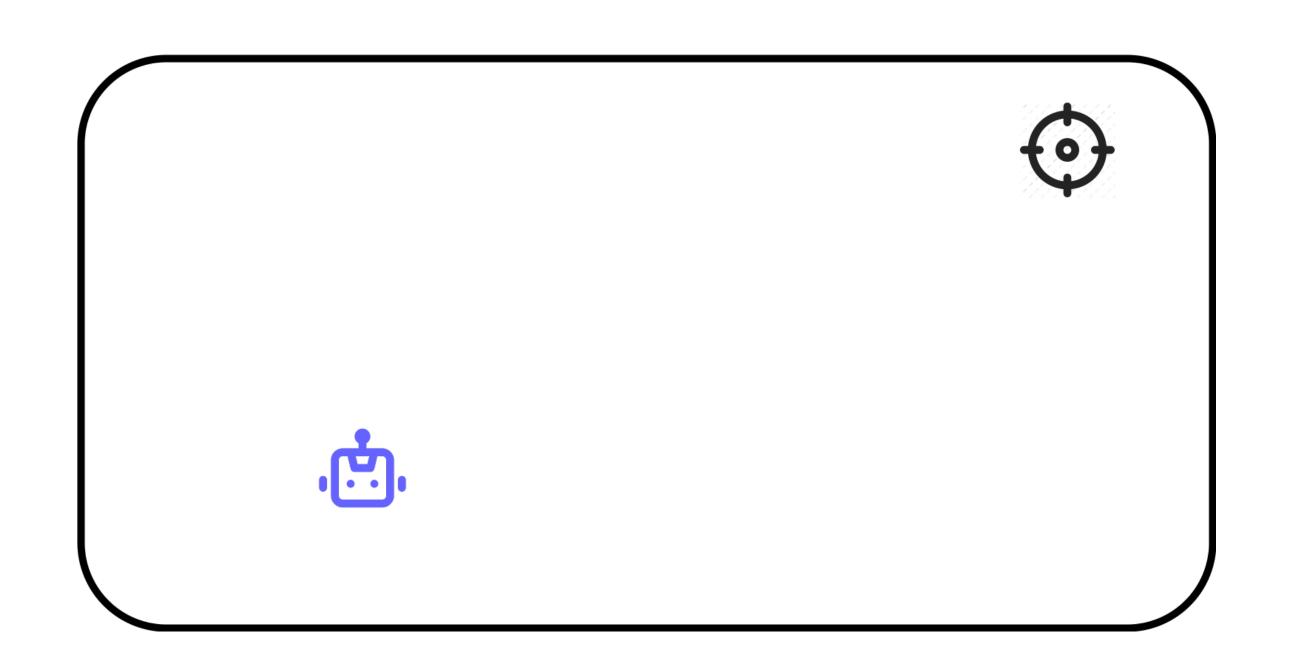
$$\pi(S; \theta_{\pi}) \qquad J(\theta) = \sum_{t=0}^{T} \gamma^{t} R_{t}$$

$$\theta_{\pi}^{1} \leftarrow \theta_{\pi}^{0} + \alpha \nabla_{\theta} J(\theta) \big|_{\theta=\theta_{\pi}^{0}}$$

$$\theta_{\pi}^{0} \to \theta_{\pi}^{1} \dots \to \theta_{\pi}^{\tau} \dots \to \theta_{\pi}^{*}$$

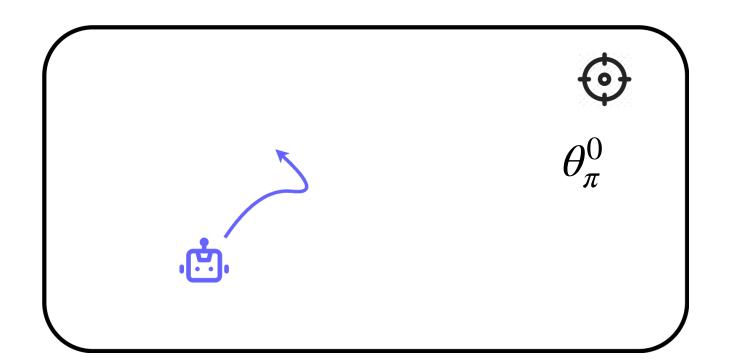
# Reinforcement Learning: Policy Gradient Ascent

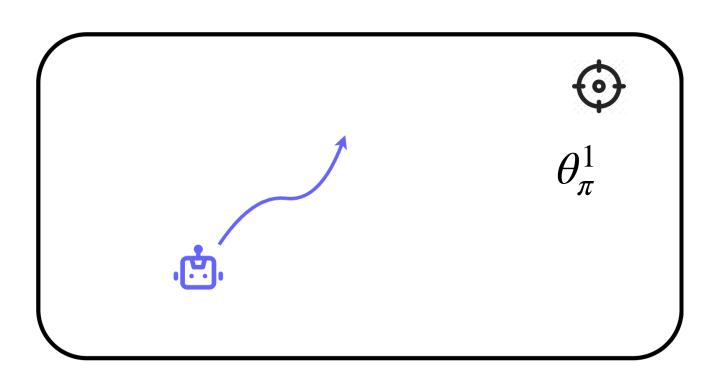
$$\theta_{\pi}^0 \to \theta_{\pi}^1 \dots \to \theta_{\pi}^{\tau} \dots \to \theta_{\pi}^*$$

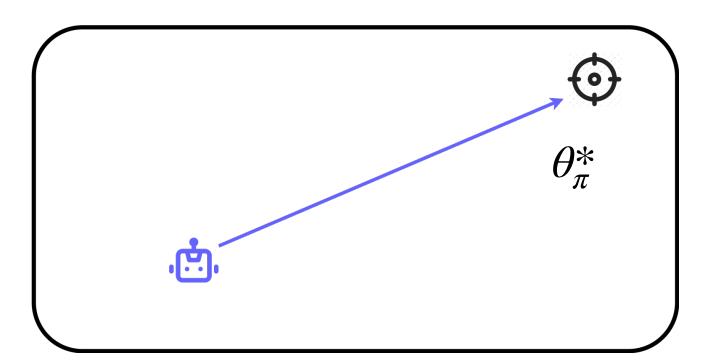


## Reinforcement Learning: Policy Gradient Ascent

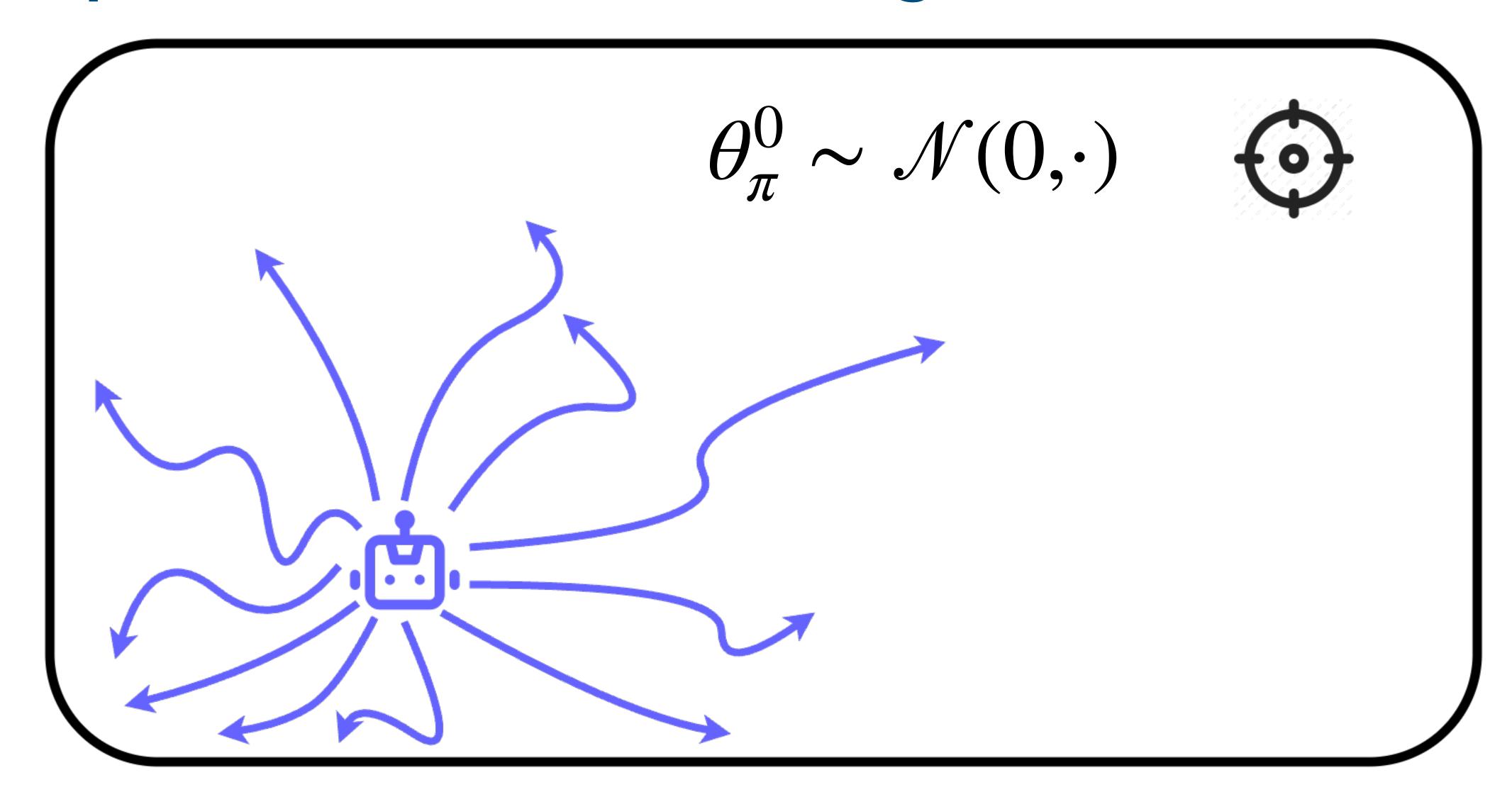
$$\theta_{\pi}^0 \to \theta_{\pi}^1 \dots \to \theta_{\pi}^{\tau} \dots \to \theta_{\pi}^*$$

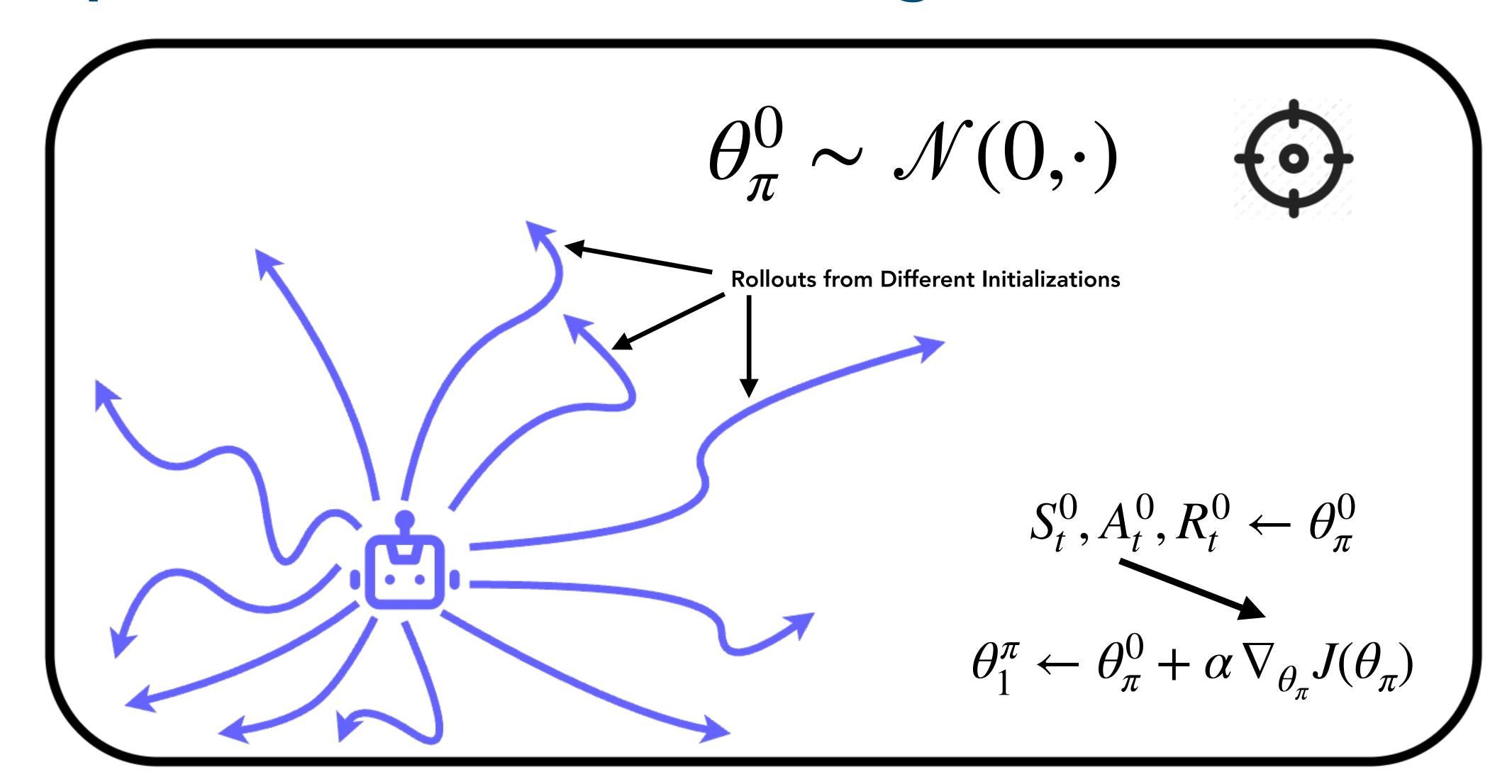


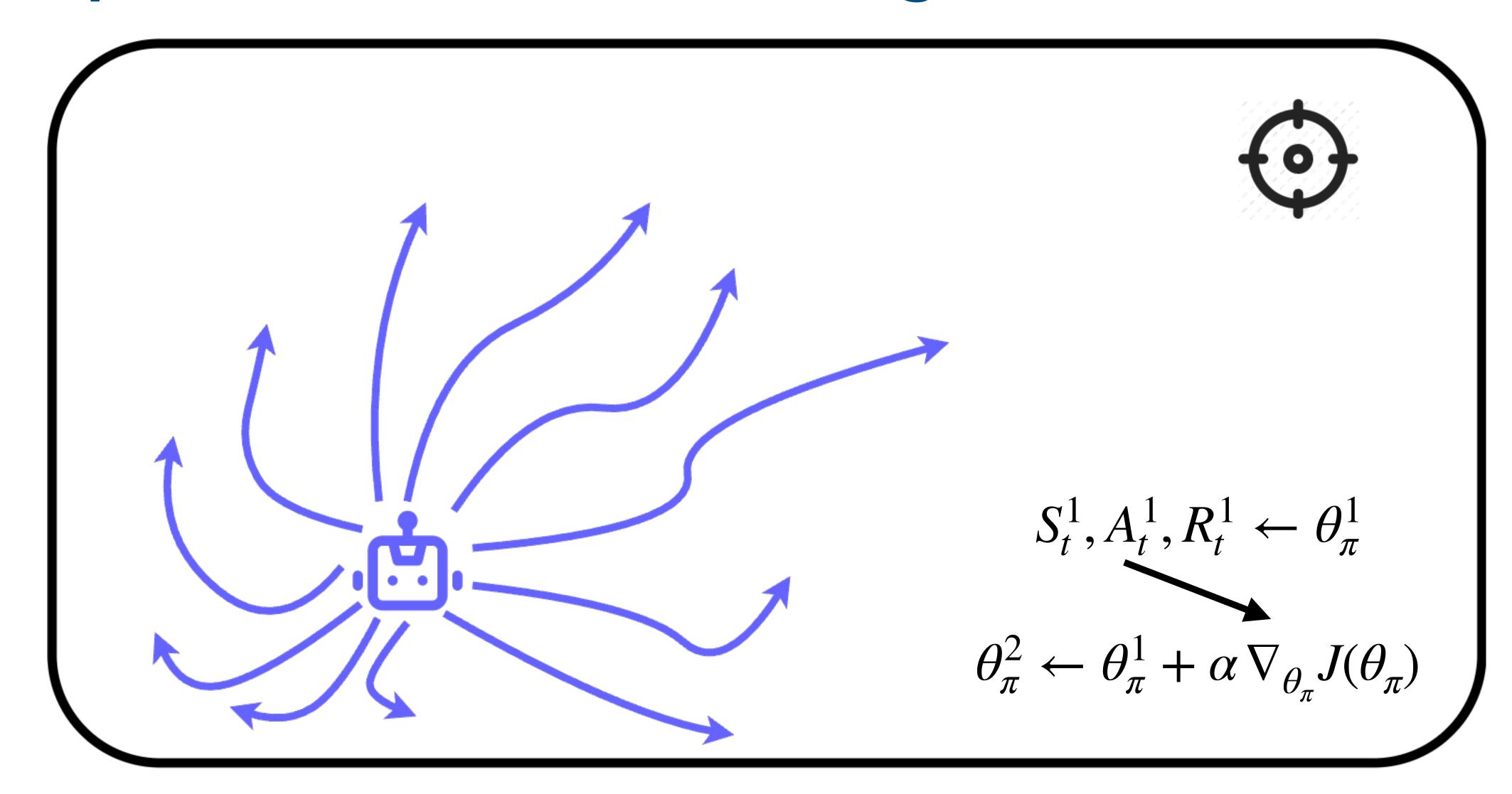


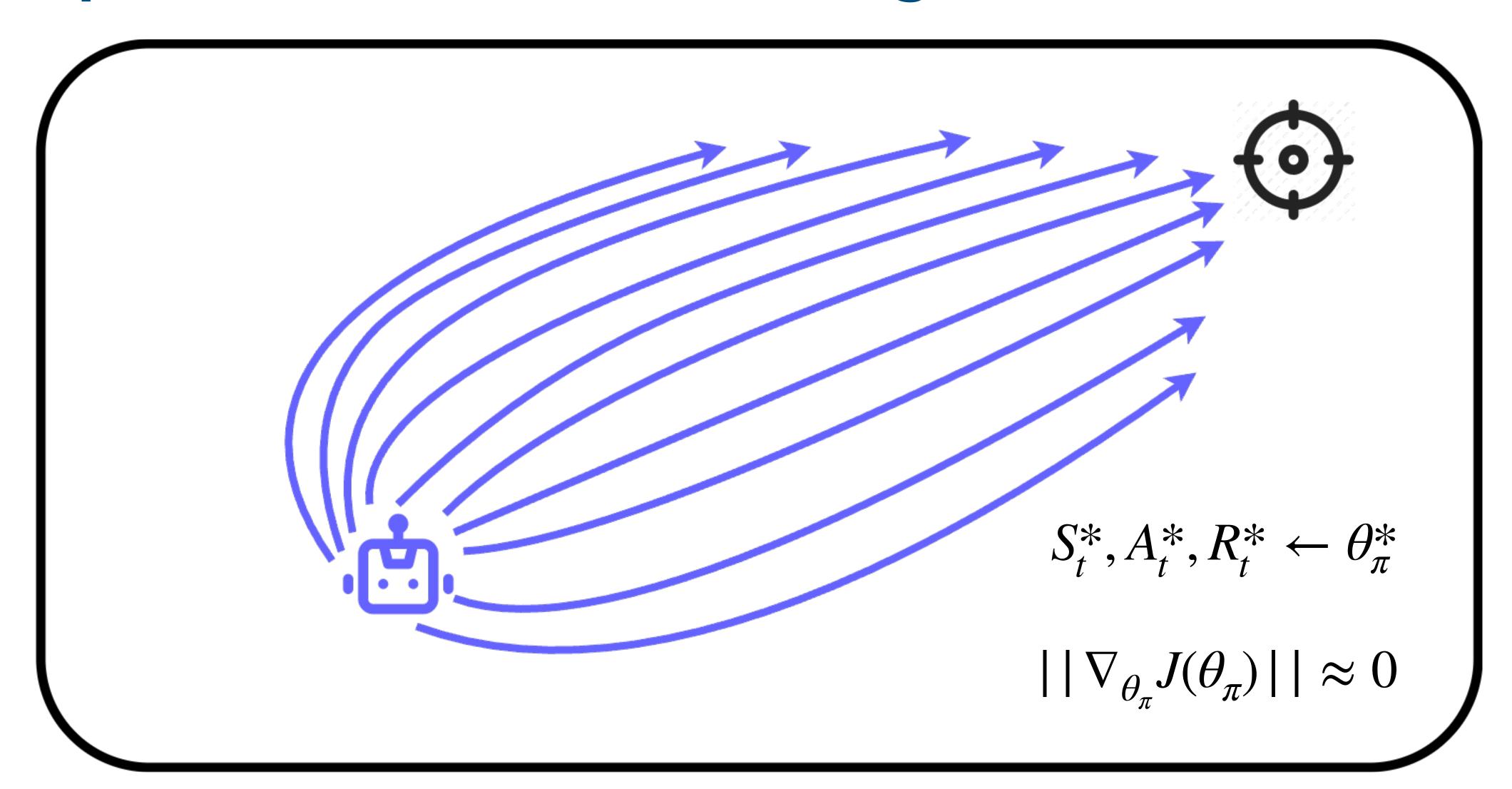


$$\theta_{\pi}^{0} \sim \mathcal{N}(0,\cdot)$$









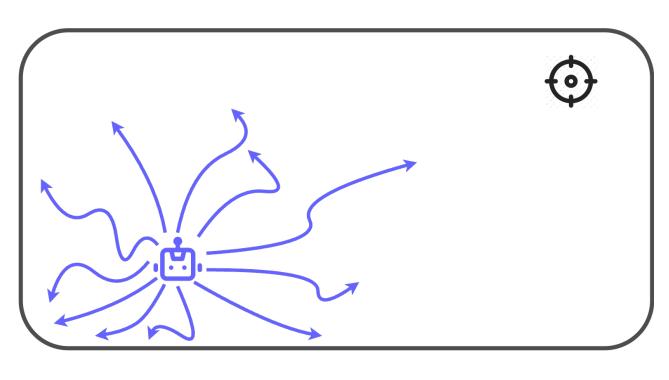
Distribution of parameters

$$\mathcal{N}(0,\cdot) = \mathbf{W}_{\pi}^0 \to \mathbf{W}_{\pi}^1 \dots \to \mathbf{W}_{\pi}^{\tau} \dots \to \mathbf{W}_{\pi}^{*}$$

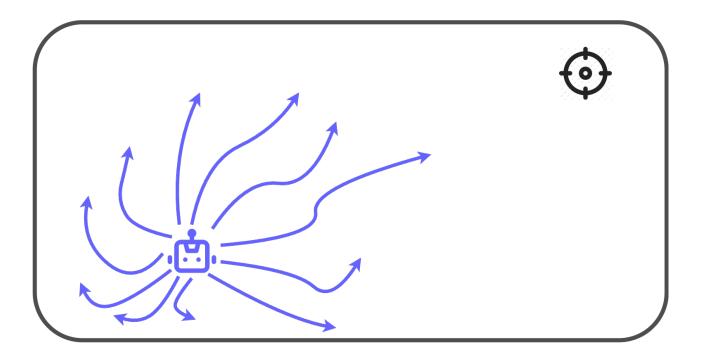
Distribution of parameters

$$\mathcal{N}(0,\cdot) = \mathbf{W}_{\pi}^{0} \to \mathbf{W}_{\pi}^{1} \dots \to \mathbf{W}_{\pi}^{\tau} \dots \to \mathbf{W}_{\pi}^{*}$$

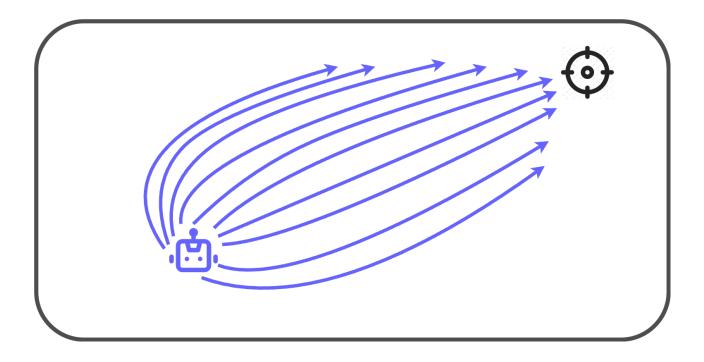
$$\tau = 0$$



$$\tau = 1$$



$$\tau \to \infty$$



### Theoretical Setting

- Deterministic transitions
- Continuous states, actions, time
- Neural networks in the infinite width limit

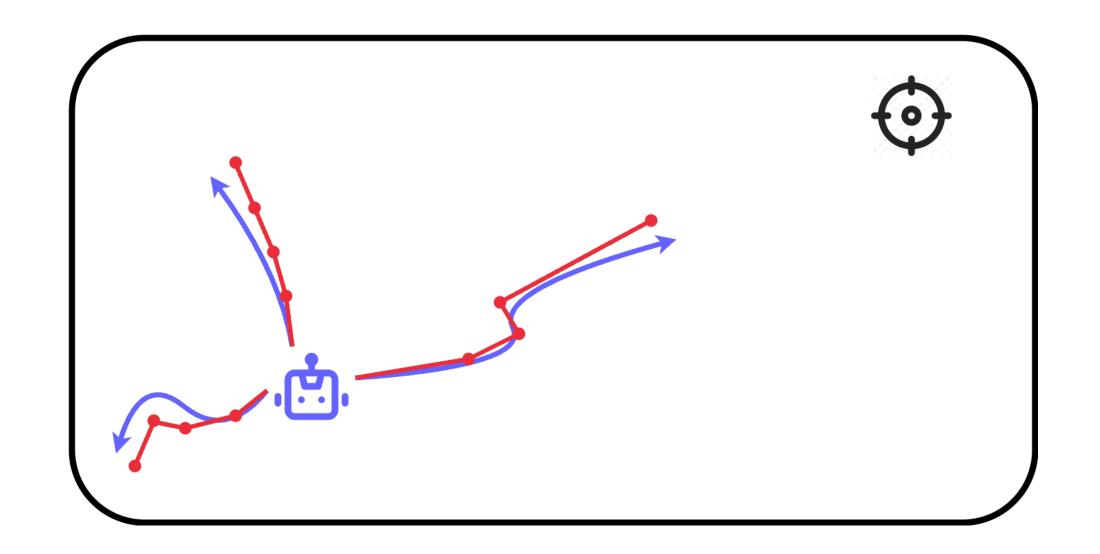
## Continuous time

Why? Gradient Descent vs Gradient Flow

$$x_{t+1} \leftarrow x_t - \alpha \nabla_x L(x) \qquad \bigvee S \qquad \frac{dx(t)}{dt} = - \nabla L(x(t))$$

## Continuous time

Continuous Time vs Discrete Time RL



Baird, 1994
Doya, 2000
Munos, 2006
Wang et al. 2020

## Continuous state, action, time

#### **Continuous Time Deterministic MDP**

$$\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, (g, H), r, \gamma, T, s_0 \rangle$$

## Continuous state, action, time

**Continuous Time Deterministic MDP** 

$$\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, (g, H), r, \gamma, T, s_0 \rangle$$

$$\mathcal{S} \subseteq \mathbb{R}^{d_s} \quad \mathcal{A} \subseteq \mathbb{R}^{d_a} \qquad r(s_t) \quad s(0) = s_0$$

## Continuous state, action, time

#### **Continuous Time Deterministic MDP**

Transition Dynamics 
$$\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, (g, H), r, \gamma, T, s_0 \rangle$$

$$\frac{ds_t}{dt} = g(s_t) + H(s_t)\pi(s_t)$$

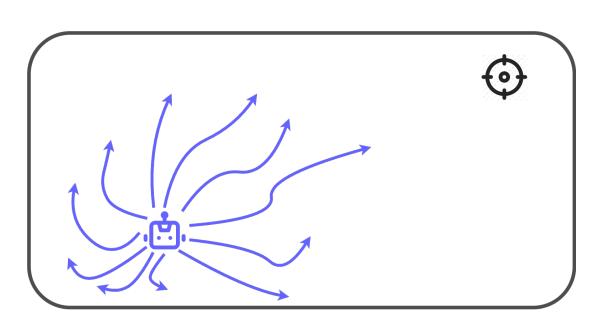
$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{R}^{d_s} \qquad \mathbb{R}^{d_s \times d_a}$$

$$\frac{ds_t}{dt} = g(s_t) + H(s_t) \Phi(s_t, \mathbf{W}_{\pi}^0) \mathbf{W}_{\pi}^{\tau} \quad \text{Infinite Width Neural Network}$$

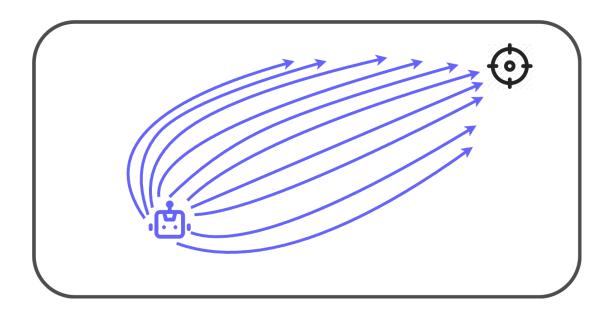
$$S_t^{ au}$$

$$\tau = 1$$



24

$$\tau \to \infty$$



 $\tau = 0$ 

#### Main result:

For  $t \in (0,\delta)$ , starting from a fixed state s:

$$S_t^{\tau}(n) \xrightarrow{\text{width } n \to \infty} \hat{S}_t^{\tau} + O(\delta^3)$$

#### Main result:

For  $t \in (0,\delta)$ , starting from a fixed state s:

$$S_t^{\tau}(n)$$
 width  $n \to \infty$   $\hat{S}_t^{\tau} + O(\delta^3)$ 

$$\Pr(\operatorname{distance}(\hat{S}_t^{\tau}, M) \ge D) \le e^{-\mathcal{R}_{\tau}D}$$
$$\operatorname{dim}(M) \le 2d_a + 1$$

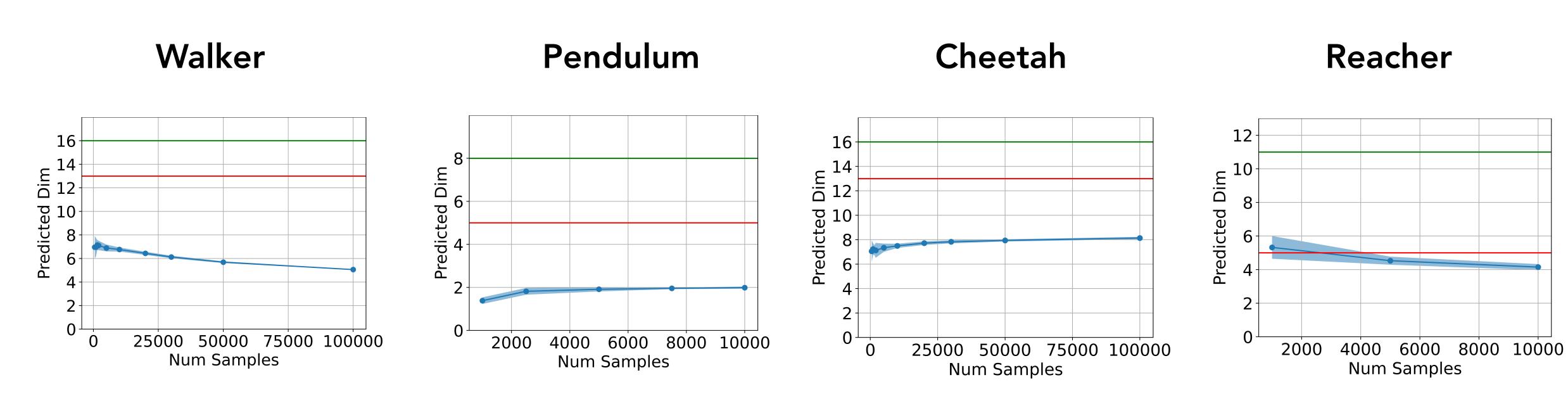
# Low-Dimensional Data in RL for Deterministic Environments Informal main result:

For a "well behaved" policy gradient algorithm with wide neural network policy and small learning rates: the agent's states are concentrated around a low dimensional manifold.

# Empirical evidence: dimensionality estimation

Facco et al 2017: empirical estimates

Green =
$$d_s$$
, Red =  $2d_a + 1$ 

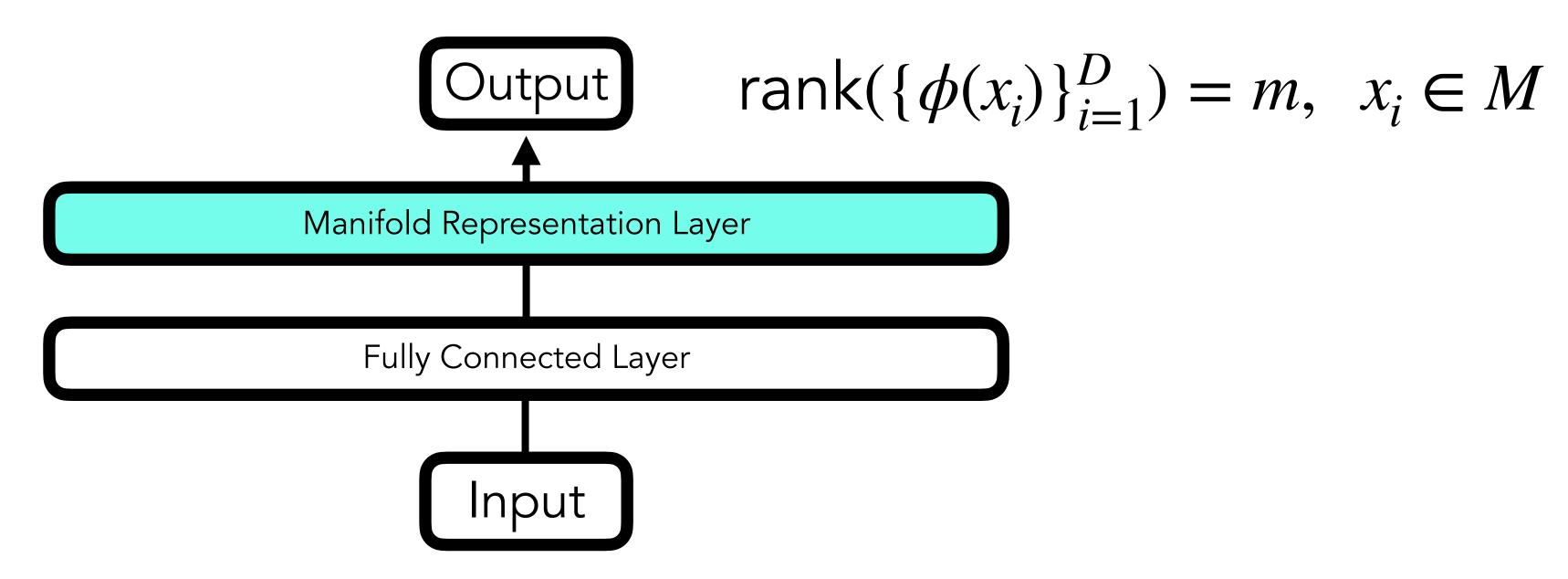


# Application: Exploit the Underlying Structure

### Manifold Representation Layer

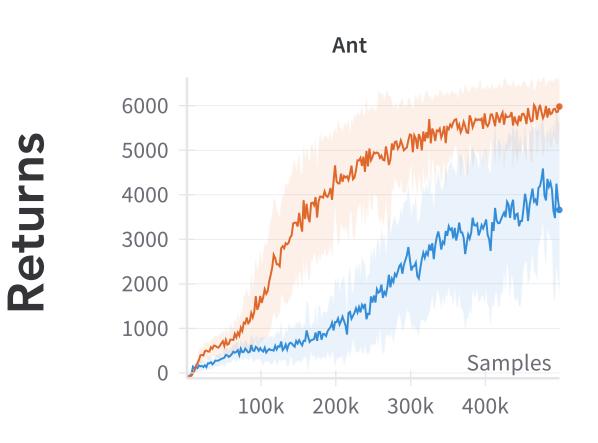
Can we learn low-dimensional representations as theory suggests?

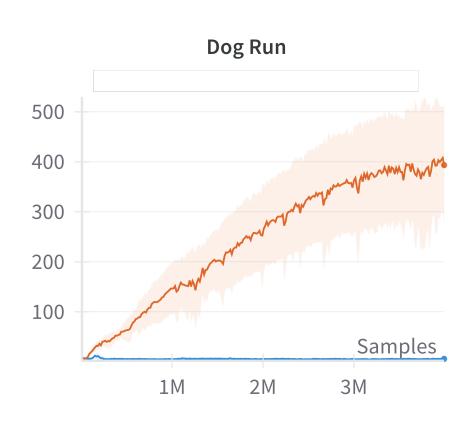
Yu et al. 2023, White box transformer

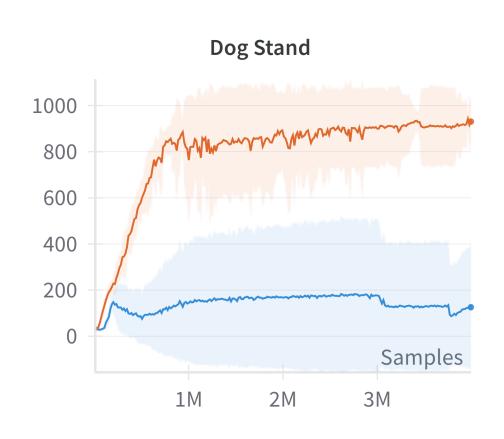


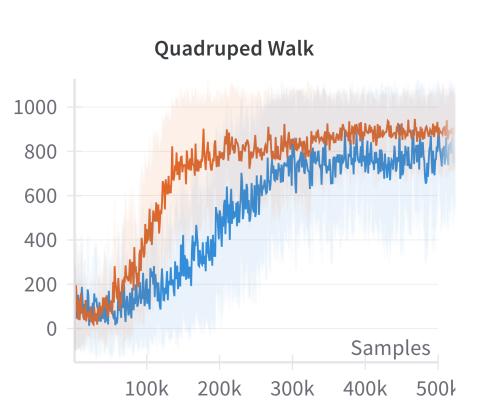
# Manifold Representation Layer

## Red = Ours, Blue = Baseline









There is a low-dimensional structure to data in reinforcement learning and neural networks are well suited to exploit this structure.

# Hire me for postdoc!



saket.ai