

NeuralPlane: Structured 3D Reconstruction in **Planar Primitives with Neural Fields**

Hangiao Ye, Yuzhou Liu, Yangdong Liu, Shuhan Shen*

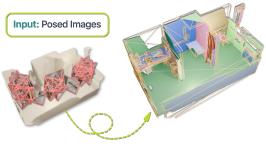
Poster Presentation: Hall 3 + Hall 2B #78 Session 1, Thu 24 Apr 10:00 CST — 12:30 CST

Oral Presentation: Peridot 204-205 Session 2F, Thu 24 April 15:30 CST — 15:42 CST

Code

Structured Reconstruction In Planes

■ Rebuilds structured (man-made) scenes as arrangements of planar primitives.



Output a set of 3D planar primitives that briefly describe both geometry and semantics of a man-made environment.

A form of explicit and compact representation with rich geometric and semantic cues

Type (Size):

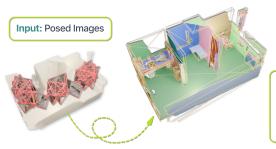
Mesh (~5M)

Point Cloud (~0.2M)

Plane Map (~0.2M)

Structured Reconstruction In Planes

■ Rebuilds structured (man-made) scenes as arrangements of planar primitives.

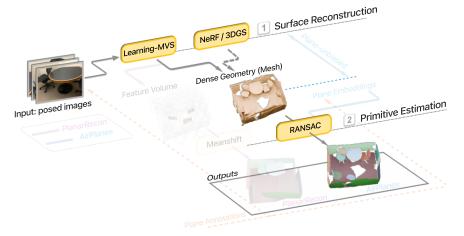


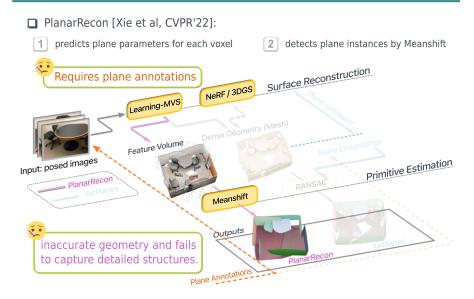
Output a set of 3D planar primitives that briefly describe both geometry and semantics of a man-made environment.

☐ Challenge: the **abstraction** of **GEOMETRY** & **SEMANTICS**

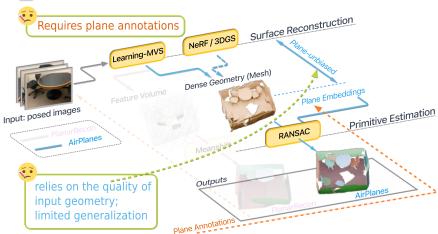
- $\hfill \square$ An intuitive solution: fitting planes to dense geometry, i.e., two stages of
 - 1 Surface Reconstruction

2 Primitive Estimation



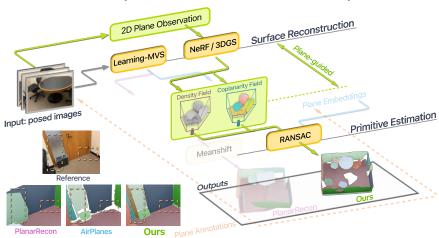


- ☐ AirPlanes [Watson et al, CVPR'24]: 1 off-the-shelf surface reconstruction
 - 2 detects plane instances by running RANSAC on geometry PLUS learned plane embeddings



Core idea: 1

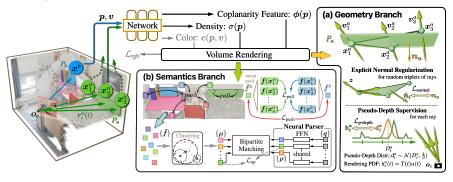
- detecting plane instances on 2D
- distilling inconsistent 2D observations into a unified 3D neural representation, which unlocks the full use of plane attributes



Methodology: Initializing Local Planar Primitives

■ To detect and recover spatial planar regions from each single view. Local Planar Primitive: $P = (\mathcal{M} \subseteq I, \pi)$ 2D mask Plane parameters Input: posed images What makes ideal 2D plane Normal Segments observations? 1. Normal Consistency -Monocular Normal Estimation Local Planar Primitives 2. Geo. & Sem. Continuity 2D Net (View-inconsistent) Over-segmentation Monocular Normal Model + KMeans SAM SfM keypoints

- Local Planar Primitives are generated with little dependence on viewpoint:
 - **X** explicitly establishing and merging correspondences
 - fusing them implicitly in the context of neural fields:



Seometry Branch translates spatial constraints into two intra-primitive regularization terms

Semantics Branch performs inter-primitive reasoning via contrastive learning

Geometry Branch

Explicit Normal Regularization

$$\mathcal{L}_{\text{normal}}(\sigma; P_a) = \mathbb{E}_{\mathcal{T}_i \sim P_a} \| 1 - \hat{\boldsymbol{n}}_i^{\mathsf{T}} \boldsymbol{n}_a \|_1.$$

NeRF-derived surface normal \hat{n}_i :

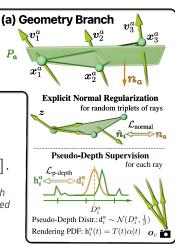
- sample a triplet of rays from the same 2D segment;
- compute the normal of the plane passing through their termination points.

Pseudo-Depth Supervision

$$\mathcal{L}_{\text{p-depth}}(\sigma, \boldsymbol{\pi}_a; P_a) = \mathbb{E}_{r_i \sim P_a} D_{\text{KL}} \left[\frac{\mathbf{d}_i^a}{i} \| \mathbf{h}_i^a(t) \right].$$

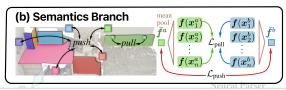
DS-NeRF[Deng et al, CVPR'22]: model the depth label d as a random variable normally distributed around the plane-derived pseudo-depth D:

$$\mathbf{d} \sim \mathcal{N}(t; D, \beta^{-1})$$



Semantics Branch

Semantics matter: crucial to discerning distinct planes.

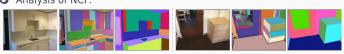


Neural Coplanarity Field (NCF)

- Decompose scenes into groups: GARField [Kim et al, CVPR'24]
- Supervise a feature field with a margin-based contrastive objective

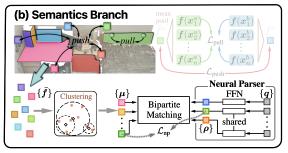
$$\mathcal{L}_{\mathrm{push}}(\phi; P_a, P_b) = \underbrace{\mathbf{1}_{\left[\|o_a - o_b\| > t_o \text{ or } \|n_a \cdot n_b\| < t_n\right]}}_{\text{Mitigate the issue of over-segmentation}} \cdot \text{ReLU}(m - \|\bar{f}_a - \bar{f}_b\|_2)$$

• Analysis of NCF:



Semantics Branch

Semantics matter: crucial to discerning distinct planes.

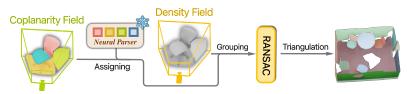


Grouping the learned NCF into instances: ContrastiveLift [Bhalgat et al, NeurIPS'23]

- No need to presume the exact number of instances;
 - Just ensure to discern every single batch adjacent planes.
- Assign closely located but distinct features into distinct prototypes;
 - The others can be easily handled by RANSAC.

Results: Explicification and Quantative Evaluation

■ Export Global 3D Parametric Plane Instances (See more in the Appendix)



☐ Table: Comparison on ScanNetv2 (left) & ScanNet++ (right)

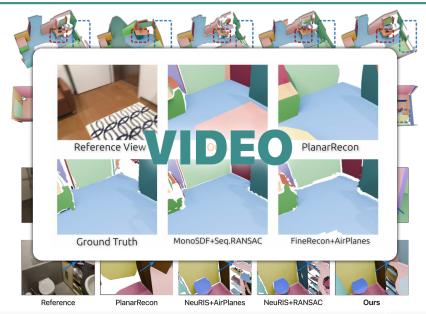
Method	Chamfer↓	F-score↑	RI↑	VOI↓	SC↑	Chamfer↓	F-score↑	RI↑	VOI↓	sc↑
PlanarRecon	9.80	49.0	0.909	3.27	0.265	14.29	43.8	0.900	3.49	0.231
AirPlanes	6.01	55.1	0.944	2.51	3.41	8.91	44.1	0.931	2.90	0.219
FineRecon	5.16	70.6	-	-	-	5.52	74.0	-	-	-
+Seq.RANSAC	5.43	66.7	0.941	2.56	0.276	5.36	75.3	0.929	2.79	0.252
+AirPlanes	5.44	66.2	0.947	2.43	0.310	5.37	75.5	0.941	2.66	0.277
NeuRIS	7.96	63.2	-	-	-	4.83	81.2	-	-	-
+Seq.RANSAC	8.11	59.3	0.945	2.57	0.293	4.84	80.9	0.941	2.46	0.315
+AirPlanes	6.17	61.0	0.943	2.55	0.291	4.69	79.9	0.943	2.53	0.287
MonoSDF	5.18	69.7	-	-	-	4.85	77.4	-	-	-
+Seq.RANSAC	5.67	65.9	0.945	2.38	0.333	5.09	77.7	0.939	2.47	0.288
+AirPlanes	5.45	66.6	0.948	2.38	0.346	5.29	74.2	0.935	2.69	0.264
Ours@PlaneRecTR	5.02	68.7	0.949	2.37	0.364	6.17	70.0	0.939	2.72	0.301
Ours@SAM	4.59	71.2	0.955	2.25	0.376	4.60	79.7	0.950	2.38	0.356

Results: Ablation Study

Ablating Components tSem.(full) 0.376 +Refine 60.3 w/o $\mathcal{L}_{\text{p-depth}}$ Reference w/o Refine. *Geo.= 0.119 Nerfacto 0.903 SC1 F-score 1 RI T w/o NCF Ours@PlaneRecTR Ours@SAM Ablating Key Hyperparameters **Observations**

- F-score ↑: VOI ↓: 100 # of Prototypes: Nn # of Dimensions: d
- ☐ Strikes a good balance between Precision and Recall. Even beats SDF-based methods.
- Geometry and semantics are tightly entangled in the task, and the combination in our method appears notable synergy.
- Inherently ambiguous in defining planar structures. Adjust the granularity.

Results: Visualization



NeuralPlane: Structured 3D Reconstruction in Planar Primitives with Neural Fields

Speaker: Hanqiao Ye

Code: https://github.com/3dv-casia/NeuralPlane

Thank you!

Wechat