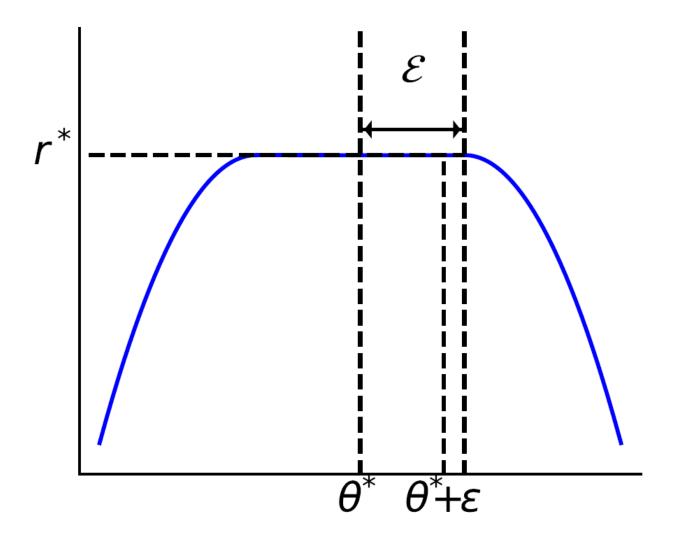
Flat Reward in Policy Parameter Space Implies Robust Reinforcement Learning

Hyun Kyu Lee, Sung Whan Yoon

Ulsan National Institute of Science and Technology dnwldlwl@unist.ac.kr, shyoon8@unist.ac.kr
24 April, 2025, @ICLR 2025, Singapore

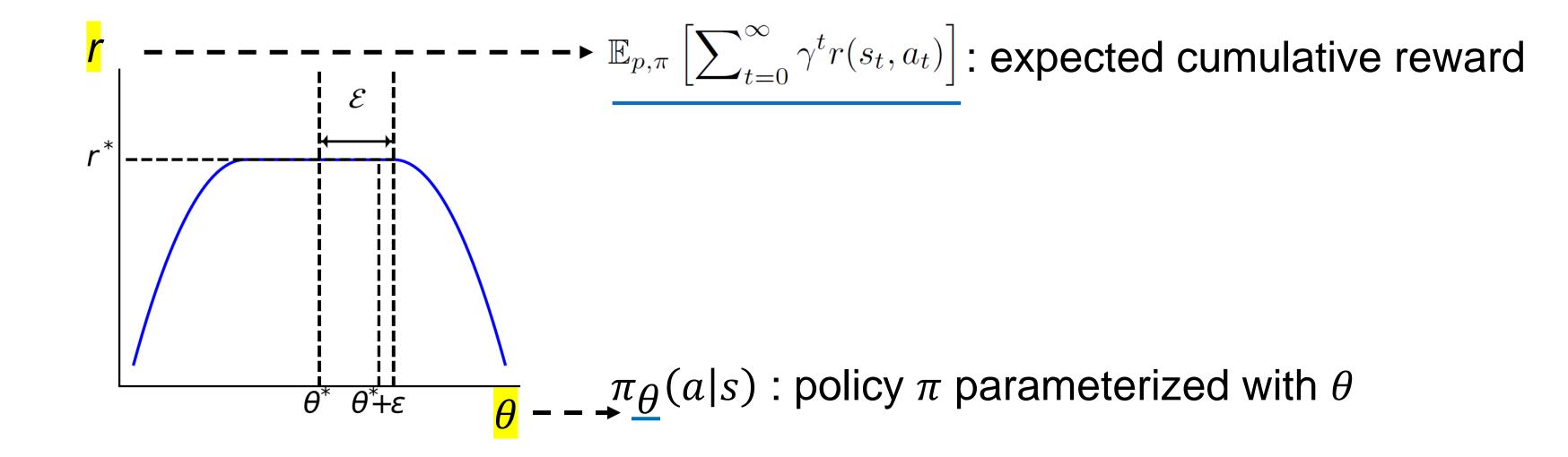
Flat reward in policy parameter space

Ensuring stability of expected cumulative reward under parameter perturbation



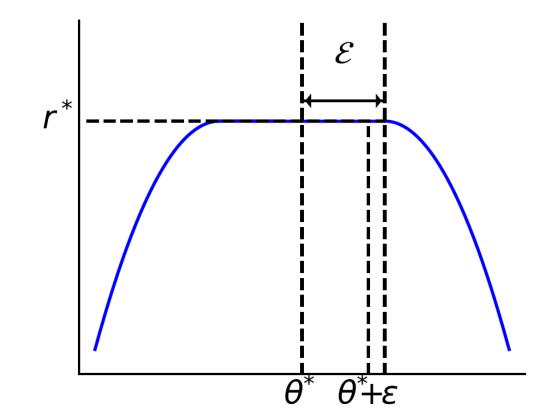
Flat reward in policy parameter space

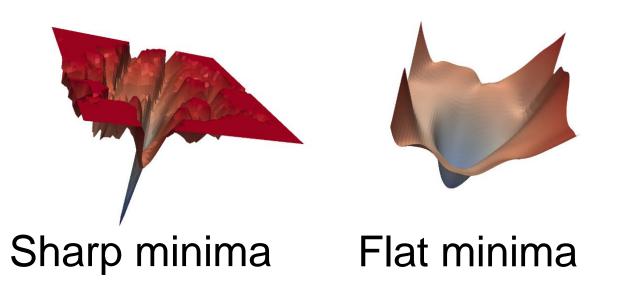
Ensuring stability of expected cumulative reward under parameter perturbation



Flat reward in policy parameter space

- Ensuring stability of expected cumulative reward under parameter perturbation
- In comparison with flat minima in supervised learning

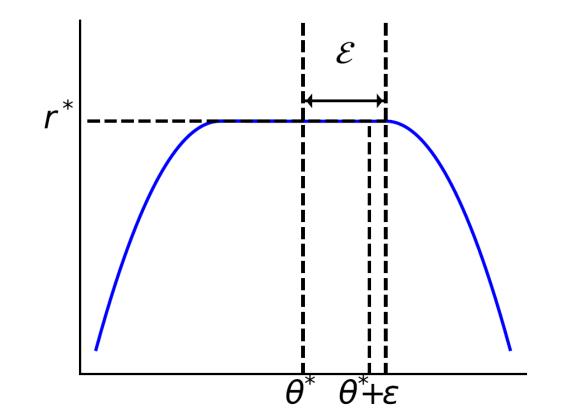


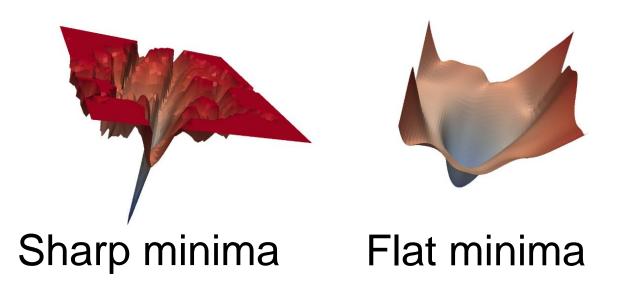


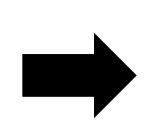
Better generalization and robustness to perturbations

Flat reward in policy parameter space

- Ensuring stability of expected cumulative reward under parameter perturbation
- In comparison with flat minima in supervised learning





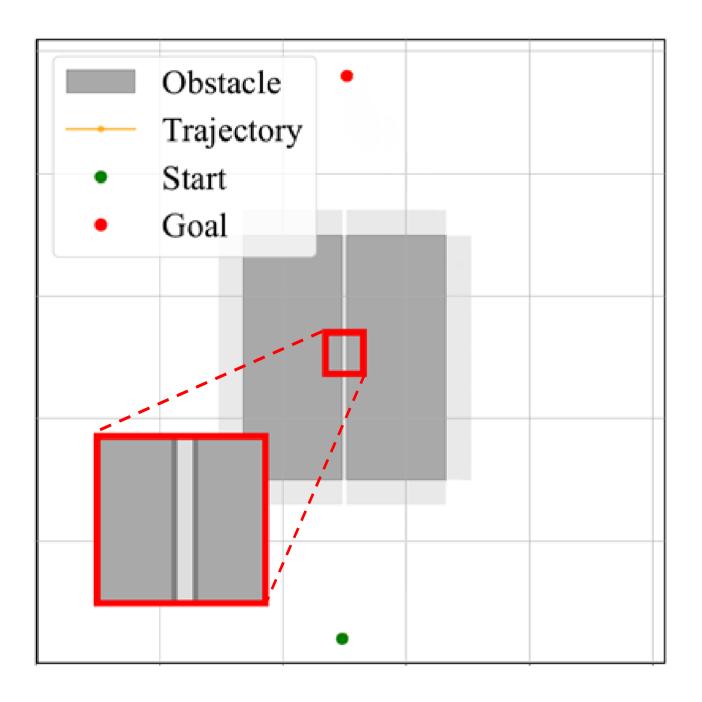


Would a flat reward landscape enhance robustness in RL against environmental variations?

Exploring Flat reward in RL by adapting SAM to PPO

SAM: Sharpness Aware Minimization

Preliminary experiment : 2D navigation task



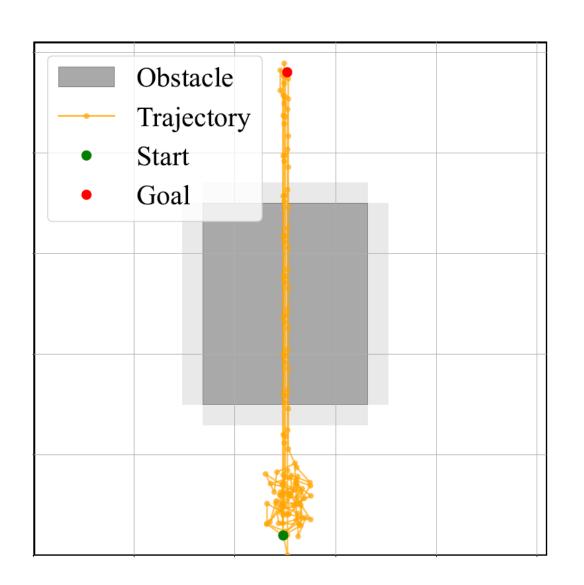
Easy task if it 'only' goes up

What if the action is mistaken?

Exploring Flat reward in RL by adapting SAM to PPO

SAM: Sharpness Aware Minimization

Preliminary experiment : 2D navigation task

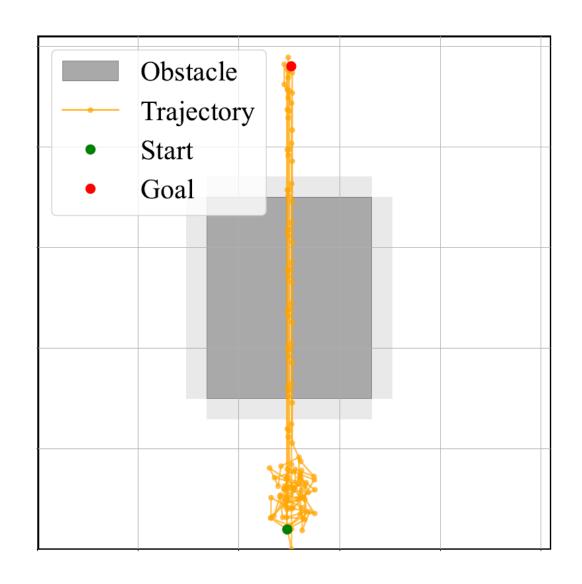


Traditional RL(PPO)

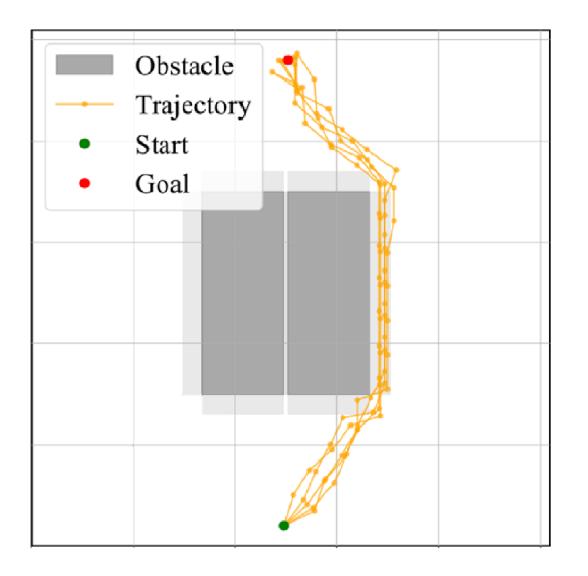
Exploring Flat reward in RL by adapting SAM to PPO

SAM: Sharpness Aware Minimization

Preliminary experiment : 2D navigation task



Traditional RL(PPO)

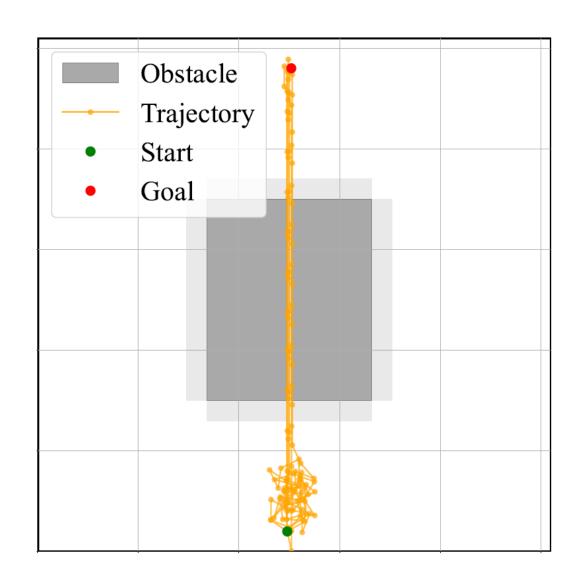


Flat reward RL(SAM+PPO)

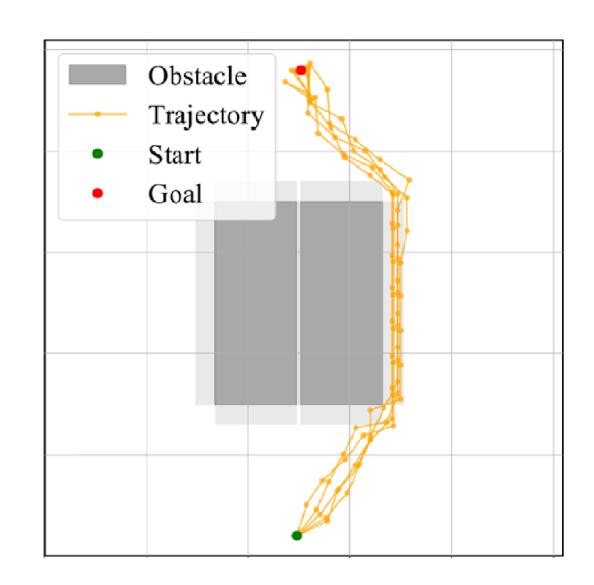
Exploring Flat reward in RL by adapting SAM to PPO

SAM: Sharpness Aware Minimization

Preliminary experiment : 2D navigation task



Traditional RL(PPO)

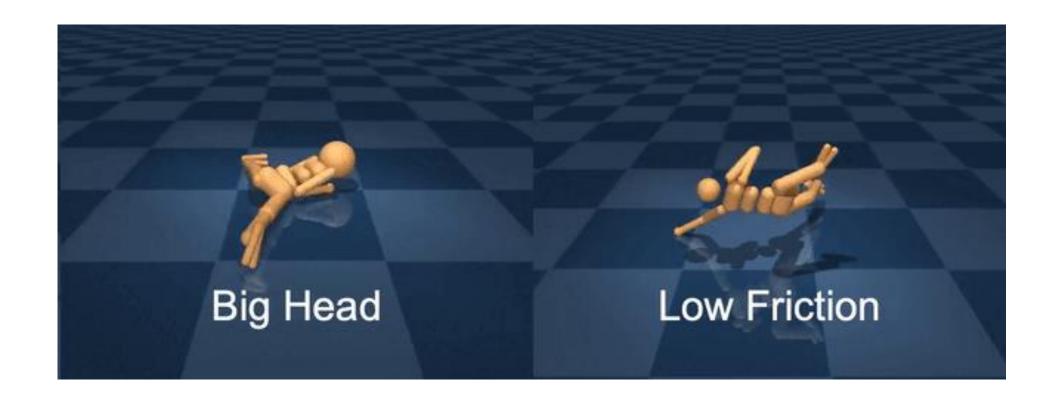


Flat reward RL(SAM+PPO)

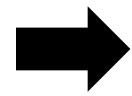
⇒ Flat reward RL maintains safer margin, demonstrating action robustness

Robust Reinforcement Learning

Real-World challenges in Reinforcement Learning



Real-World scenarios



To overcome the gap between simulation and real-world systems

Robust Reinforcement Learning

- Goal
 - Maintaining performance despite uncertainties in the environment
 - Uncertainties: Action, Transition probability, Reward function

Uncertainty set

 \mathcal{P}

 p^0

Robust Reinforcement Learning

- Goal
 - Maintaining performance despite uncertainties in the environment
 - Uncertainties: Action, Transition probability, Reward function
- Approach
 - Optimizes a max-min objective to handle worst-case scenarios
 - Maximizing the return in the <u>worst-case</u> scenario under the Uncertainty set

Uncertainty set

 ${\mathcal P}$

 n^{0}

 \tilde{p}

Robust Reinforcement Learning

- Goal
 - Maintaining performance despite uncertainties in the environment
 - Uncertainties: Action, Transition probability, Reward function
- Approach
 - Optimizes a max-min objective to handle worst-case scenarios
 - Maximizing the return in the worst-case scenario under the Uncertainty set

Minimum return

Objective function

$$\max_{\pi} \min_{p \in \mathcal{P}} \mathbb{E}_{p,\pi} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right]$$

$$\max_{\pi} \min_{p \in \mathcal{P}} \mathbb{E}_{p,\pi} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right] \qquad \max_{\pi} \min_{\|\delta_t\| < \beta} \mathbb{E}_{p,\pi} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t + \delta_t) \right]$$

Uncertainty set

Robust Reinforcement Learning

Limitations

- Impractical Assumptions
 - Requires prior knowledge of uncertainty sets, unrealistic in real-world scenarios
- Limited Scalability
 - Struggles in continuous and high-dimensional environments due to the complexity of uncertainty sets and optimization
- High Computational Cost
 - Modeling uncertainties requires solving complex max-min problems, leading to significant computational overhead

Applying SAM to Reinforcement Learning

- Goal
 - Enhancing RL robustness using reward flatness in policy parameter space

Applying SAM to Reinforcement Learning

- Goal
 - Enhancing RL robustness using reward flatness in policy parameter space
- Approach
 - Adapt SAM's min-max objective to Reinforcement Learning
 - Pursues: Flat reward landscape in policy parameter space
 - Transforms: Loss minimization to reward maximization

Applying SAM to Reinforcement Learning

- Goal
 - Enhancing RL robustness using reward flatness in policy parameter space
- Approach
 - Adapt SAM's min-max objective to Reinforcement Learning
 - Pursues: Flat reward landscape in policy parameter space
 - Transforms: Loss minimization to reward maximization
- Objective function

$$\min_{\theta} \max_{\|\epsilon\| \le \rho} \mathcal{L}(\theta + \epsilon) \qquad \qquad \min_{\theta} \max_{\|\epsilon\| \le \rho} \mathbb{E}_{p,\pi_{\theta + \epsilon}} \left[\sum_{t=0}^{\infty} -\gamma^{t} r(s_{t}, a_{t}) \right] \qquad \qquad \max_{\pi} \min_{\|\delta_{t}\| \le \beta} \mathbb{E}_{p,\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t} + \delta_{t}) \right]$$

SAM

SAM applied RL

Action Robust Reinforcement Learning

Applying SAM to Reinforcement Learning

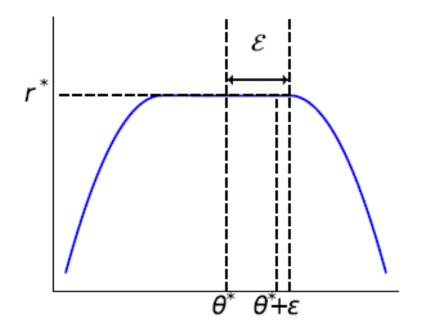
Contributions

- Theoretical: Linked flat reward landscapes to action robustness
- Empirical: Validated robustness on various Reinforcement Learning tasks

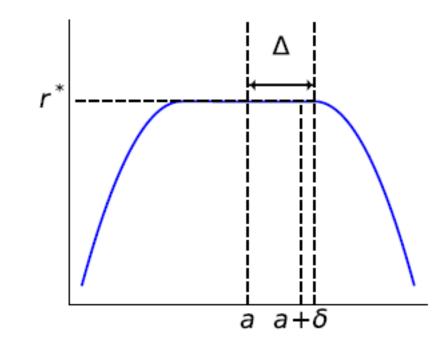
Linking Flat Reward to Action Robustness

- Definitions
 - E-flat reward maxima

Δ-action robust policy



(a) \mathcal{E} -flat reward maxima



(b) Δ -action robust policy

Linking Flat Reward to Action Robustness

Definitions

E-flat reward maxima

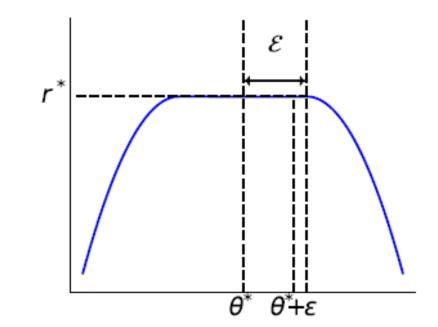
Definition 1 (\mathcal{E} -flat reward maxima) For a reward function r(s,a) and a policy model $\pi_{\theta}(a|s)$ parameterized by θ , a maximum θ^* is \mathcal{E} -flat reward maxima when the following constraints hold:

For all
$$\epsilon \in \mathbb{R}^m$$
 s.t. $\|\epsilon\| \leq \mathcal{E}$, $\mathbb{E}_{s \sim p, a \sim \pi_{\theta^* + \epsilon}(a|s)} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right] = r^*$
There exists $\epsilon \in \mathbb{R}^m$ s.t. $\|\epsilon\| > \mathcal{E}$, $\mathbb{E}_{s \sim p, a \sim \pi_{\theta^* + \epsilon}(a|s)} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right] < r^*$ (4) where $r^* := \mathbb{E}_{s \sim p, a \sim \pi_{\theta^*}(a|s)} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right]$ and \mathcal{E} is a positive real number.

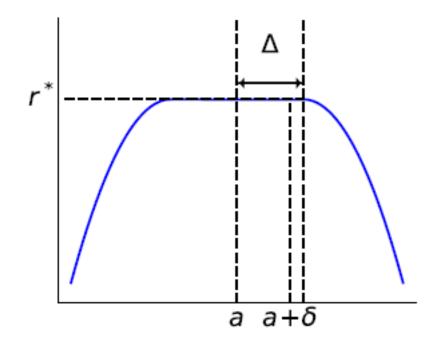
Δ-action robust policy

Definition 2 (Δ -action robust policy) For a reward function r(s,a), a policy model $\pi_{\theta^*}(a|s)$ parameterized by θ^* is Δ -action robust when the following constraints hold:

For all
$$\delta_t \in \mathbb{R}^{|A|}$$
 s.t. $\|\delta_t\| \leq \Delta$, $\mathbb{E}_{s \sim p, a \sim \pi_{\theta^*}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t + \delta_t) \right] = r^*$
There exists $\delta_t \in \mathbb{R}^{|A|}$ s.t. $\|\delta_t\| > \Delta$, $\mathbb{E}_{s \sim p, a \sim \pi_{\theta^*}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t + \delta_t) \right] < r^*$, (5) where $r^* := \mathbb{E}_{s \sim p, a \sim \pi_{\theta^*}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right]$ and Δ is a positive real number.



(a) \mathcal{E} -flat reward maxima



(b) Δ -action robust policy

Linking Flat Reward to Action Robustness

Proposition

Flat reward links to action robustness

Proposition 1 (Flat reward links to action robustness) If θ^* is an \mathcal{E} -flat reward maximum, then the policy π_{θ^*} is Δ^* -action robust, where:

$$\Delta^* \le ||J(\theta^*)||\mathcal{E} + \mathcal{O}(\mathcal{E}^2),\tag{6}$$

and $J(\theta^*) := \nabla_{\theta} \mu_{\theta}(s)|_{\theta=\theta^*}$ is the Jacobian matrix of the mean action $\mu_{\theta}(s)$ with respect to θ , evaluated at θ^* .

E-flat reward maxima

Δ-action robust policy

Linking Flat Reward to Action Robustness

Proposition

Flat reward links to action robustness

Proposition 1 (Flat reward links to action robustness) If θ^* is an \mathcal{E} -flat reward maximum, then the policy π_{θ^*} is Δ^* -action robust, where:

$$\Delta^* \le ||J(\theta^*)||\mathcal{E} + \mathcal{O}(\mathcal{E}^2),\tag{6}$$

and $J(\theta^*) := \nabla_{\theta} \mu_{\theta}(s)|_{\theta=\theta^*}$ is the Jacobian matrix of the mean action $\mu_{\theta}(s)$ with respect to θ , evaluated at θ^* .

Proof

$$\pi_{\theta}(a|s) = \mathcal{N}(a; \mu_{\theta}(s), \Sigma) \quad \text{Parameter perturbation}$$

$$\parallel \epsilon \parallel \leq \mathcal{E} \quad \text{Taylor expansion around } \theta^*$$

$$\mu_{\theta^*+\epsilon}(s) = \mu_{\theta^*}(s) + J(\theta^*)\epsilon + \mathcal{O}(\|\epsilon\|^2)$$

$$\|\delta_t\| \le \|J(\theta^*)\| \|\epsilon\| + \mathcal{O}(\|\epsilon\|^2) \le \|J(\theta^*)\| \mathcal{E} + \mathcal{O}(\mathcal{E}^2)$$

E-flat reward maxima

Δ-action robust policy

$$\mathbb{E}_{s \sim p, a \sim \pi_{\theta^* + \epsilon}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right] = r^*$$

$$\pi_{\theta^*+\epsilon}(a_t|s_t) = \pi_{\theta^*}(a_t - \delta_t|s_t)$$

$$\mathbb{E}_{s \sim p, a \sim \pi_{\theta^* + \epsilon}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right] = \mathbb{E}_{s \sim p, a_t \sim \pi_{\theta^*}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t + \delta_t) \right]$$

$$\mathbb{E}_{s \sim p, a \sim \pi_{\theta^*}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t + \delta_t) \right] = r^*$$

Linking Flat Reward to Action Robustness

- Remarks
 - Δ-action robust policy satisfies the objective of action robust MDP

Remark 1.1 (A link to Max-Min problem of action robustness) For Δ^* -action robust policy derived by \mathcal{E} -flat reward maxima θ^* , the policy directly satisfies the objective of action robust MDP:

$$\theta^* = \arg\max_{\theta} \min_{\|\delta_t\| \le \Delta^*} \mathbb{E}_{s \sim p, a \sim \pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t + \delta_t) \right], \tag{7}$$

which implies that flatter reward yields the robustness against action perturbations.

$$\min_{\theta} \max_{\|\epsilon\| \le \rho} \mathcal{L}(\theta + \epsilon) \qquad \max_{\theta} \mathbb{E}_{p,\pi_{\theta + \epsilon}} \left[\sum_{t=0}^{\infty} -\gamma^t r(s_t, a_t) \right] \qquad \max_{\pi} \min_{\|\delta_t\| \le \beta} \mathbb{E}_{p,\pi} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t + \delta_t) \right]$$

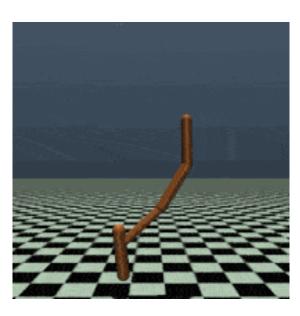
SAM

SAM applied RL

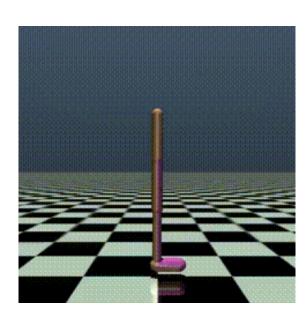
Action Robust Reinforcement Learning

Experimental Setup

Mujoco tasks



Hopper



Walker2d

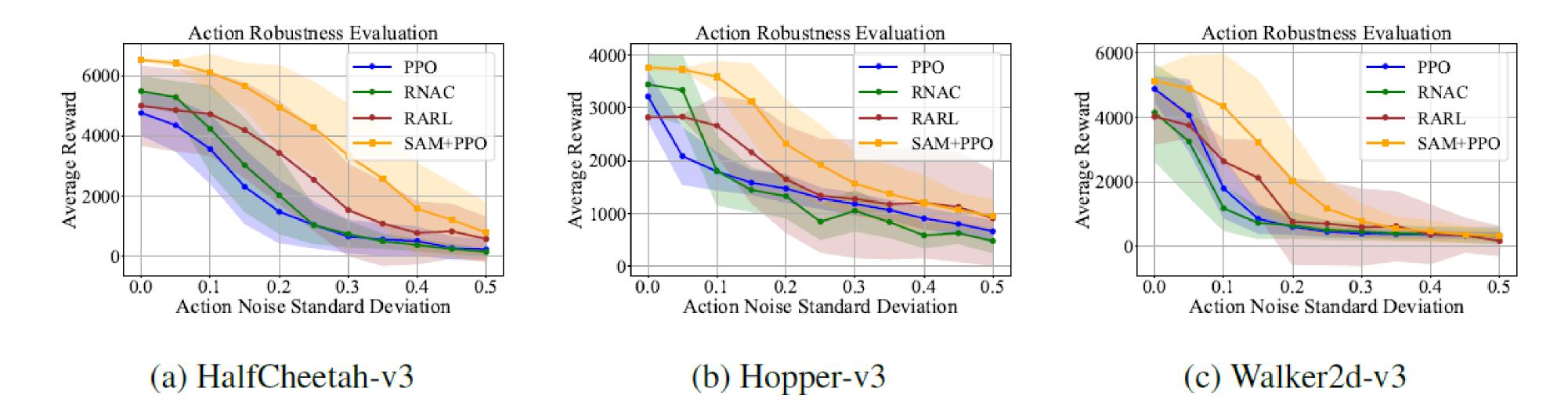
Baseline comparison

- Traditional RL: Proximal Policy Optimization (PPO)
- Robust RL
 - Robust Natural Actor-Critic (RNAC) (Zhou et al., 2024)
 - Robust Adversarial Reinforcement Learning (RARL) (Pinto et al., 2017).

Action Robustness Evaluation

Action perturbation : added zero mean Gaussian noise

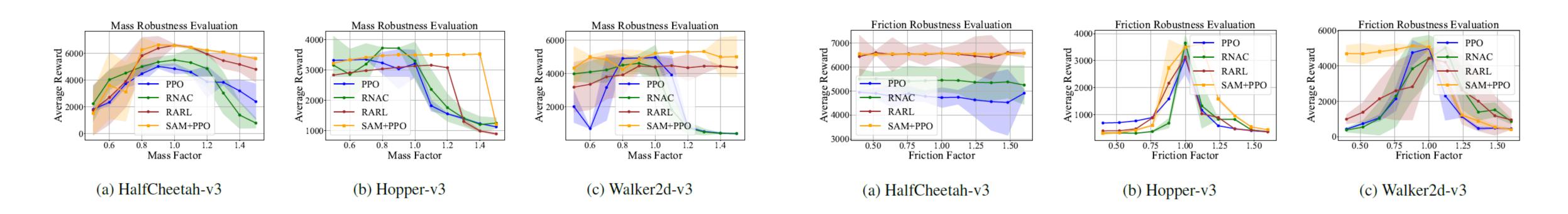
$$a_{\text{noisy}} = a + \mathcal{N}(0, \sigma_a^2)$$



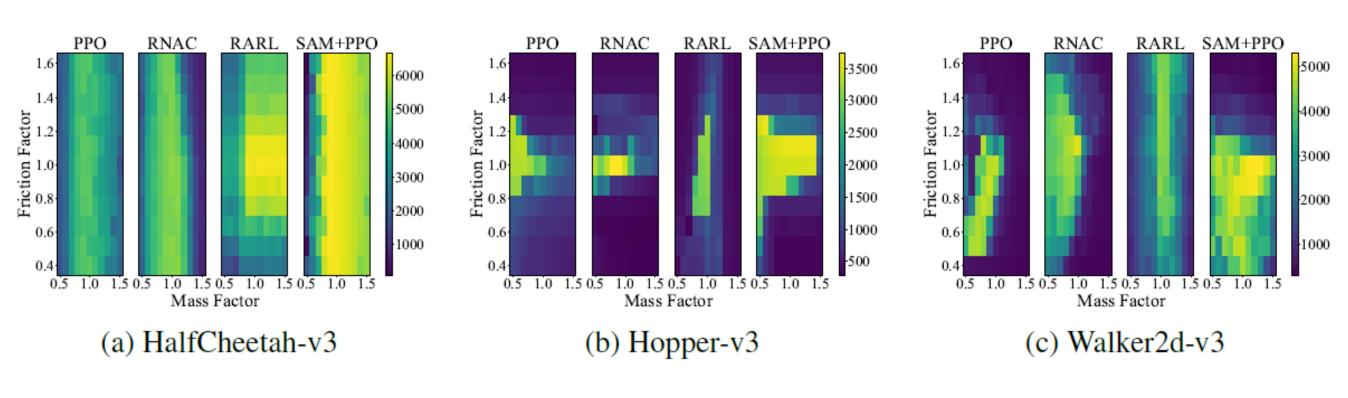
⇒ flat reward achieved by SAM+PPO makes the policy less sensitive to action perturbations

Transition Probability Robustness Evaluation

Variation in Torso Mass and Friction Coefficient



Mass and Friction Joint Variations



Reward Robustness Evaluation

Reward perturbation : added Gaussian noise when training

Table 2: Performance comparison of agents trained with and without reward noise ($\sigma_r = 0.1$)

Algorithm	HalfCheetah-v3		Hopper-v3		Walker2d-v3	
	Nominal	Noisy	Nominal	Noisy	Nominal	Noisy
PPO	4820	3688(-1132)	3150	2945(-205)	4780	2204(-2576)
RNAC	5423	4088(-1335)	3211	3035(-176)	4184	3172(-1012)
RARL	5620	4617(-1003)	3124	2993(-131)	4388	3085(-1303)
SAM+PPO	6530	5990(-540)	3505	3377(-128)	$\bf 5120$	4226(-894)

^(–) values means the performance degradation from 'Nominal' to 'Noisy.'

Reward Surface Visualization

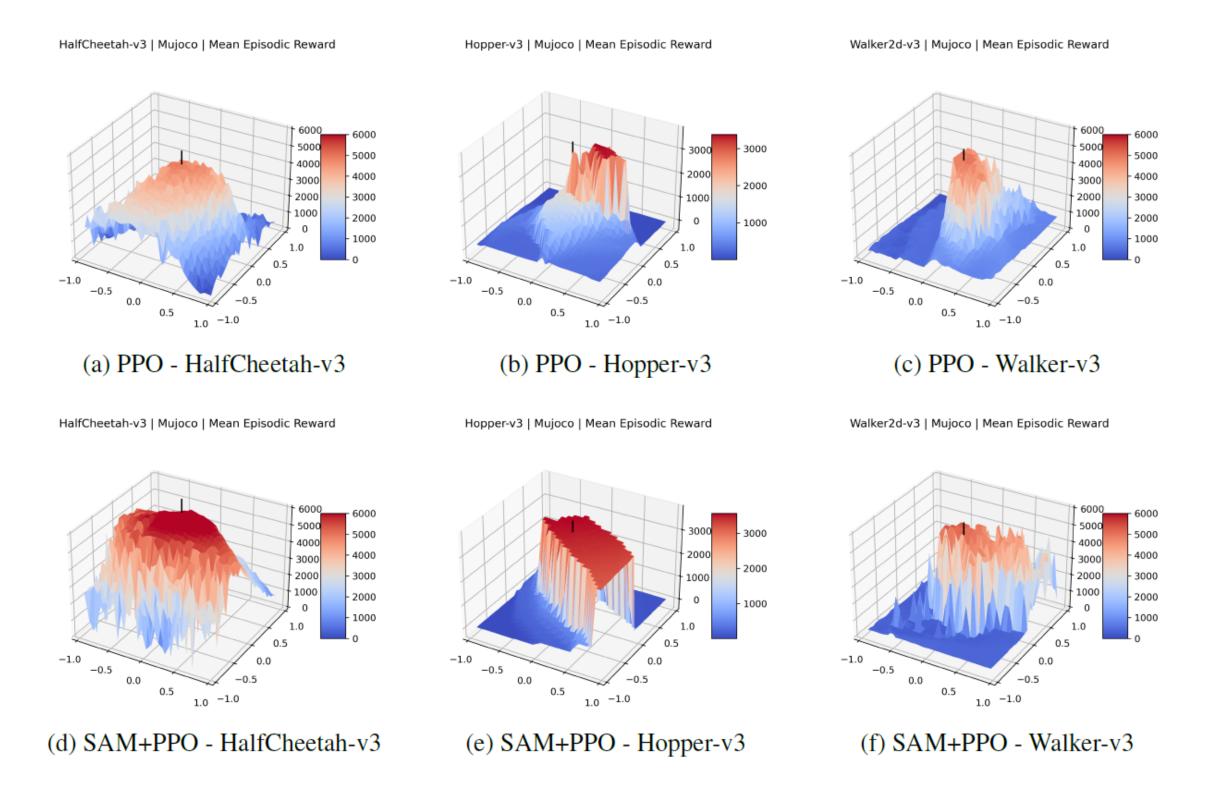


Table 3: Flatness metrics for PPO and SAM+PPO (↓: indicates that lower is better).

Metrics	$\lambda_{\max} \downarrow 0$	Keskar et al., 2	2017)	LPF ↓ (Bisla et al., 2022)		
Environment	HalfCheetah-v3	Hopper-v3	Walker2d-v3	HalfCheetah-v3	Hopper-v3	Walker2d-v3
PPO SAM+PPO	$15192.95 \\ 275.93$	131.07 80.86	7239.59 271.91	0.0385 0.00097	0.00034 0.00018	0.0269 0.00028

4. Conclusion

Key findings

- Theoretically link Flat reward landscapes with RL robustness
- Empirically show SAM+PPO outperforms baselines (PPO, RNAC, RARL)

Impact

- Enables reliable RL for real-world applications
- Broadens the scope of robust RL with a simple yet effective approach

Thank you!

