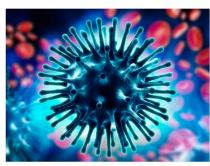


Time Series Data

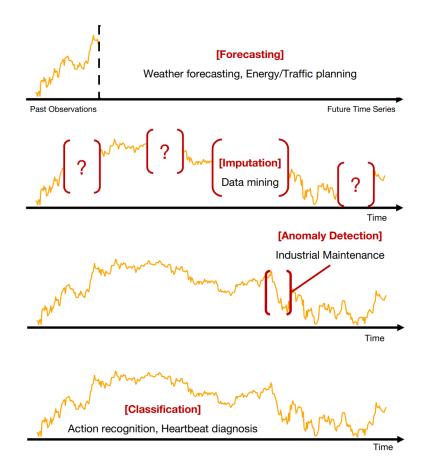
Time series are a crucial data modality

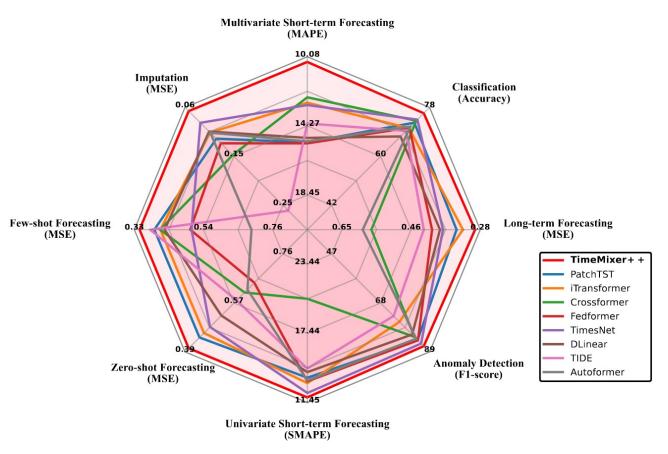
Energy Consumption


Traffic Flow

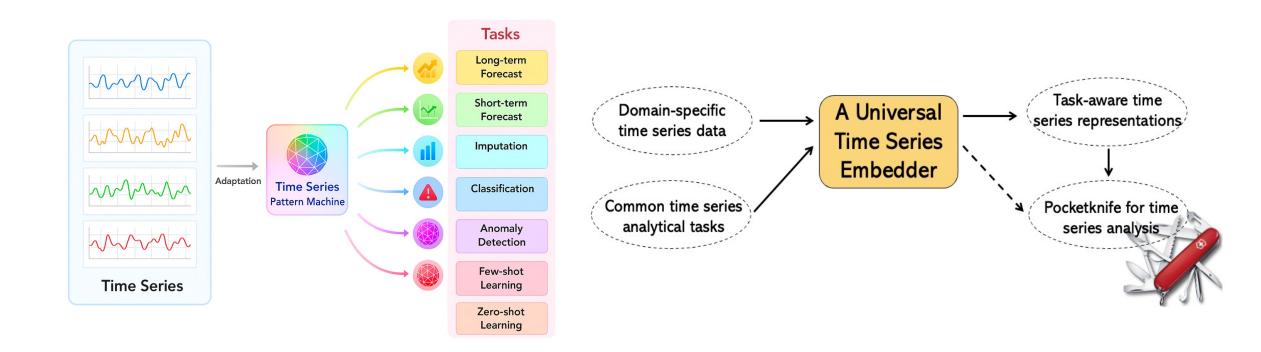
Economic Changes

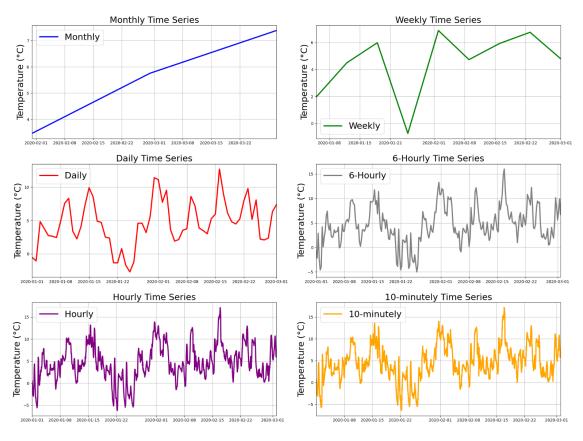
Weather Variations

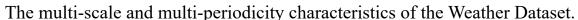


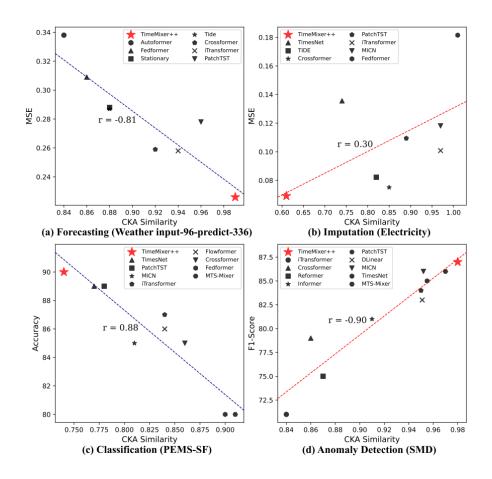

Disease Propagation

Time Series Intelligence


Unlocking general-purposed time series analysis

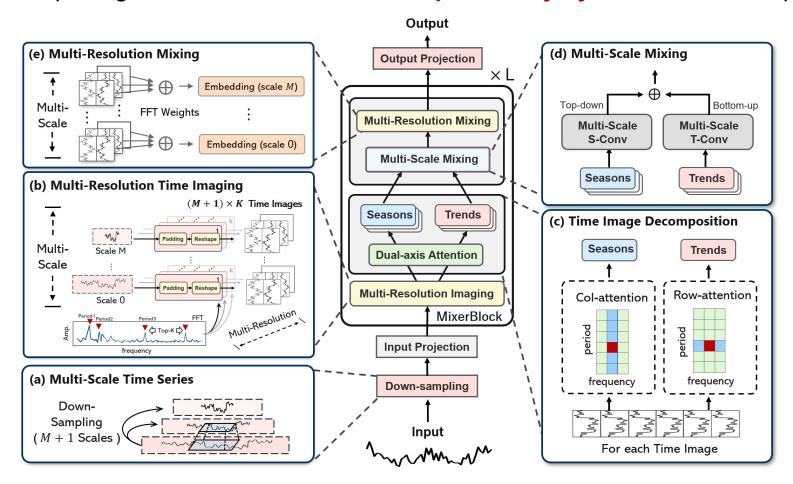

Time Series Intelligence


Introducing Time Series Pattern Machine (TSPM)



Time Series Intelligence

What capabilities must a model possess to function as a TSPM?

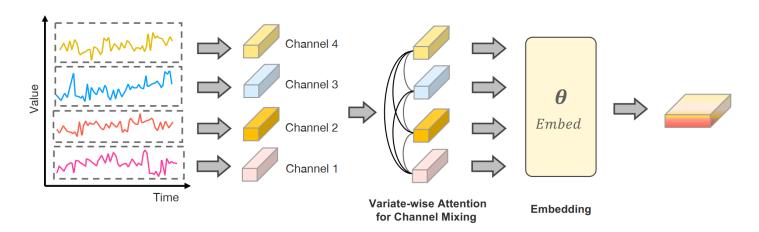


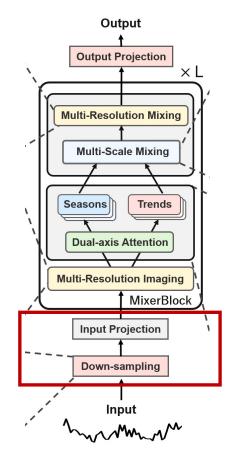
Solution

Introducing TimeMixer++

- Transforming time series into a series of time series images via time imaging
- Capturing both multi-scale and multi-periodicity dynamics in latent space

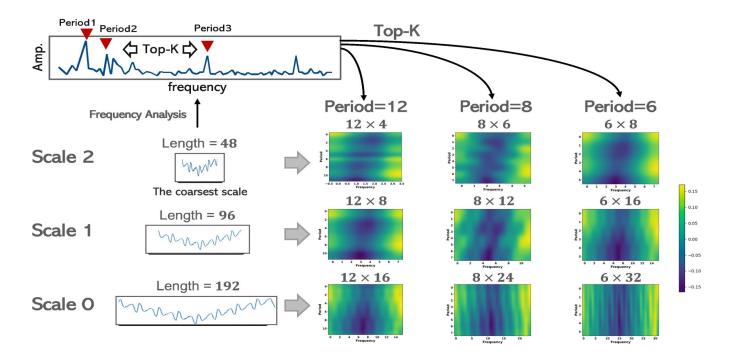
TimeMixer++

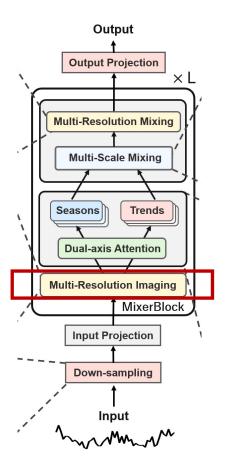

Multi-Scale Time Series and Input Projection


- We generate a multi-scale representation by using Conv1D for down-sampling
- We adopt a **channel mixing** strategy using variate-wise attention at the coarsest scale
- Each scale is embedded separately

$$\mathbf{x}_m = \text{Conv}(\mathbf{x}_{m-1}, \text{stride} = 2), \quad m \in \{1, \dots, M\}$$
 (1)

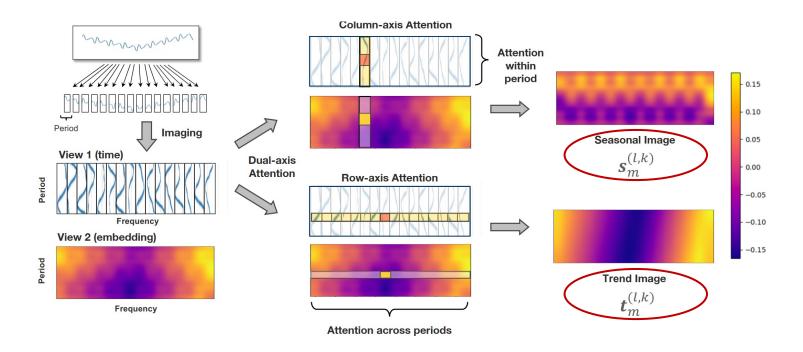
$$\mathbf{x}_M = \text{Channel-Attn}(\mathbf{Q}_M, \mathbf{K}_M, \mathbf{V}_M) \tag{2}$$

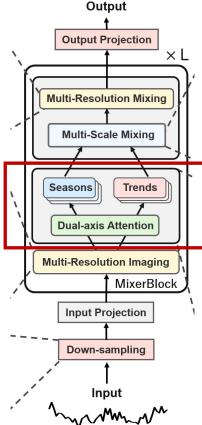

$$\mathcal{X}^0 = \{\mathbf{x}_0^0, \cdots, \mathbf{x}_M^0\} = \text{Embed}(\mathcal{X}_{init})$$



- Multi-Resolution Time Series Imaging
 - We convert the input into multi-resolution time images with frequency analysis

$$\operatorname{MRTI}(\mathcal{X}^{l}) = \{\mathcal{Z}_{m}^{l}\}_{m=0}^{M} = \left\{\mathbf{z}_{m}^{(l,k)} \mid m = 0, \dots, M; \ k = 1, \dots, K\right\} \\
= \left\{\operatorname{Reshape}_{m,k}(\operatorname{Padding}_{m,k}(\mathbf{x}_{m}^{l})) \mid m = 0, \dots, M; \ k = 1, \dots, K\right\},$$
(6)

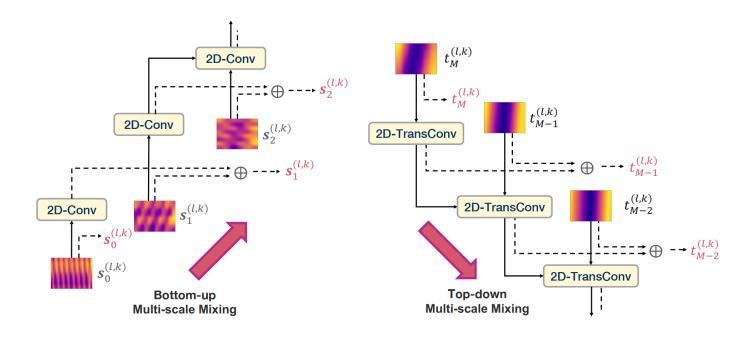


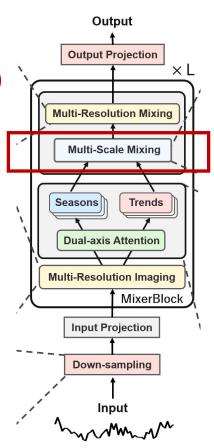

Time Image Decomposition

 Columns represent time series segments within each period, while the rows track consistent time points across periods

Column-axis attention captures seasonality within period, and row-

axis attention extracts trend across periods

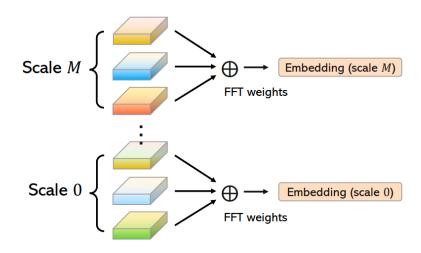

Multi-Scale Mixing

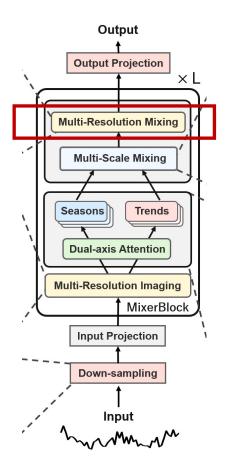

Mixing the seasonal patterns from fine-scale to coarse-scale (Bottom-up)

for
$$m: 1 \to M$$
 do: $\mathbf{s}_m^{(l,k)} = \mathbf{s}_m^{(l,k)} + 2\text{D-Conv}(\mathbf{s}_{m-1}^{(l,k)}),$

Mixing the trend patterns from coarse-scale to fine-scale (Top-down)

for
$$m: M - 1 \to 0$$
 do: $\mathbf{t}_m^{(l,k)} = \mathbf{t}_m^{(l,k)} + 2\text{D-TransConv}(\mathbf{t}_{m+1}^{(l,k)})$ (9)





Multi-Resolution Mixing

• Finally, at each scale, we mix *K* periods adaptively

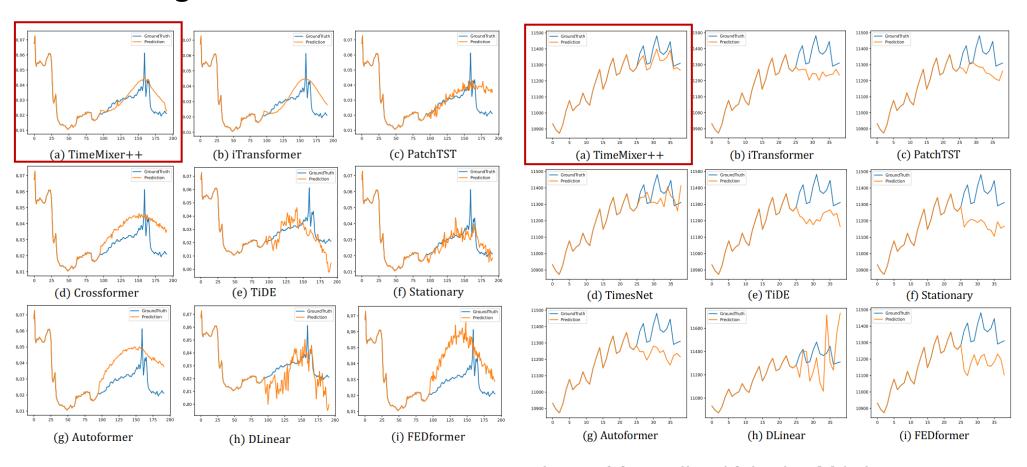
$$\{\hat{\mathbf{A}}_{f_k}\}_{k=1}^K = \text{Softmax}(\{\mathbf{A}_{f_k}\}_{k=1}^K), \quad \mathbf{x}_m^l = \sum_{k=1}^K \hat{\mathbf{A}}_{f_k} \circ \mathbf{z}_m^{(l,k)}, \quad m \in \{0, \dots, M\}$$
 (11)

Forecasting

Long-term forecasting results. We average the results across 4 prediction lengths: {96, 192, 336, 720}.

Models	_	lixer++ urs)	TimeMixer		sformer 023	PatchTST (2023)	Crossforme	r TiDE	TimesNet (2023)	DLinear (2023)	SCINet (2022a)	FEDformer 2022b	Stationary (2022c)	Autoformer 2021
Metric	MSE	MAE	MSE MAI	E MSE	MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE
Electricity	0.165	0.253	0.182 0.272	2 0.178	0.270	0.205 0.290	0.244 0.334	0.251 0.344	0.192 0.295	0.212 0.300	0.268 0.365	0.214 0.327	0.193 0.296	0.227 0.338
ETT (Avg)	0.349	0.399	0.367 0.388	0.383	0.377	0.381 0.397	0.685 0.578	8 0.482 0.470	0.391 0.404	0.442 0.444	0.689 0.597	0.408 0.428	0.471 0.464	0.465 0.459
Exchange	0.357	0.391	0.391 0.453	3 0.378	0.360	0.403 0.404	0.940 0.707	0.370 0.413	0.416 0.443	0.354 0.414	0.750 0.626	0.519 0.429	0.461 0.454	0.613 0.539
Traffic	0.416	0.264	0.484 0.29	7 0.428	0.282	0.481 0.304	0.550 0.304	0.760 0.473	0.620 0.336	0.625 0.383	0.804 0.509	0.610 0.376	0.624 0.340	0.628 0.379
Weather	0.226	0.262	0.240 0.27	0.258	0.278	0.259 0.281	0.259 0.315	6 0.271 0.320	0.259 0.287	0.265 0.317	0.292 0.363	0.309 0.360	0.288 0.314	0.338 0.382
Solar-Energy	0.203	0.238	<u>0.216</u> 0.280	0 0.233	0.262	0.270 0.307	0.641 0.639	0 0.347 0.417	0.301 0.319	0.330 0.401	0.282 0.375	0.291 0.381	0.261 0.381	0.885 0.711

Forecasting

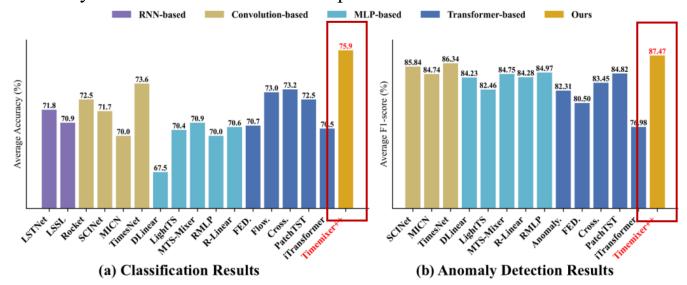

Results of multivariate short-term forecasting, averaged across all PEMS datasets.

Models	TimeMixer++ (Ours)	TimeMixer i'		TiDE 2023b	TimesNet	N-HiTS I (2023)	N-BEATS I (<mark>2019)</mark>								Auto. (2021)
SMAPE	11.448	11.723	12.684	13.950	11.829	11.927	11.851	13.152	19.638	14.863	13.525	13.639	12.840	12.780	12.909
MASE	1.487	1.559	1.764	1.940	1.585	1.613	1.559	1.945	5.947	2.207	2.111	2.095	1.701	1.756	1.771
OWA	0.821	<u>0.840</u>	0.929	1.020	0.851	0.861	0.855	0.998	2.279	1.125	1.051	1.051	0.918	0.930	0.939

Univariate short-term forecasting results, averaged across all M4 subsets.

Models	TimeMixer++ (Ours)	TimeMixer i	Transformer	r TiDE (2023a)		Crossformer	PatchTST (2023)	TimesNe	t MICN (2023a)	DLinear (2023)	FEDforme (2022b)	r Stationary (2022c)	Autoformer (2021)
MAE MAPE	15.91 10.08	<u>17.41</u> <u>10.59</u>	19.87 12.55	21.86	19.12 12.24	19.03 12.22	23.01 14.95	20.54 12.69	19.34 12.38	23.31 14.68	23.50 15.01	21.32 14.09	22.62 14.89
RMSE	27.06	<u>28.01</u>	31.29	34.42	30.12	30.17	36.05	33.25	30.40	37.32	36.78	36.20	34.49

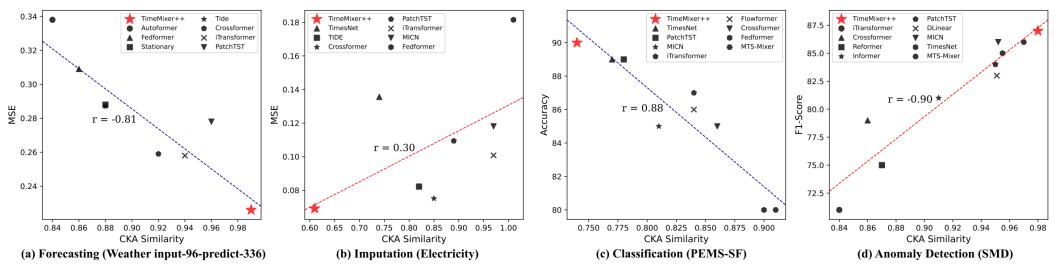
Forecasting


Input-96-predict-96 in the Weather dataset

Input-36-predict-18 in the M4 dataset

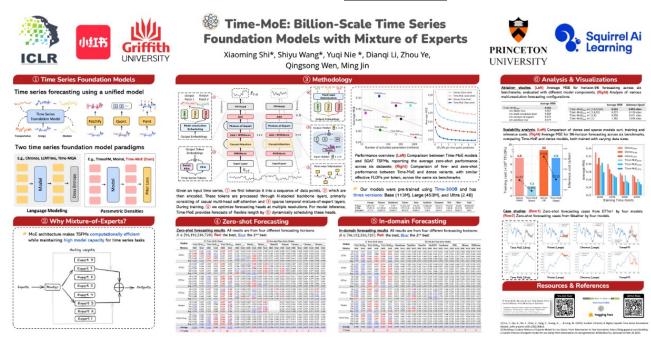
Imputation, Classification and Anomaly Detection

Models		dixer++ urs)	TimeMixer (2024b)	iTransformer	PatchTST (2023)	Crossformer (2023)	FEDformer (2022b)	TIDE (2023a)	DLinear (2023)	TimesNet (2023)	MICN (2023a)	Autoformer (2021)
Metric	MSE	MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE
ETT(Avg)	0.055	0.154	0.097 0.220	0.096 0.205	0.120 0.225	0.150 0.258	0.124 0.230	0.314 0.366	0.115 0.229	0.079 0.182	0.119 0.234	0.104 0.215
ECL	0.109	0.197	0.142 0.261	0.140 0.223	0.129 <u>0.198</u>	0.125 0.204	0.181 0.314	0.182 0.202	0.080 0.200	0.135 0.255	0.138 0.246	6 0.141 0.234
Weather	0.049	0.078	0.091 0.114	0.095 0.102	0.082 0.149	0.150 0.111	0.064 0.139	0.063 0.131	0.071 0.107	0.061 0.098	0.075 0.126	6 0.066 0.107


Results of **classification and anomaly detection**. The results are averaged from several datasets. Higher accuracy and F1 score indicate better performance.

Model Analysis

Ablation Study & Representation Analysis


	ETTh1	ETTh2	ETTm1	ETTm2	ECL	Traffic	Weather	Solar	Average	Promotion
TIMEMIXER++	0.419	0.339	0.369	0.269	0.165	0.416	0.226	0.203	0.300	-
w/o channel mixing	0.424	0.346	0.374	0.271	0.197	0.442	0.233	0.245	0.317	5.36%
w/o time image decomposition	0.441	0.358	0.409	0.291	0.198	0.445	0.251	0.241	0.329	8.81%
w/o multi-scale mixing	0.447	0.361	0.391	0.284	0.172	0.427	0.239	0.234	0.320	6.25%
w/o multi-resolution mixing	0.431	0.350	0.374	0.280	0.181	0.432	0.241	0.233	0.316	5.10%

Representation analysis in four tasks. For each model, the centered kernel alignment (CKA) similarity is computed between representations from the first and the last layers. Lower CKA similarity indicates more diverse representations across layers.

Read More

- Poster Session: TimeMixer++
 - This afternoon (3 5:30 p.m. <u>25 April</u>) Hall 3 + Hall 2B #345
- Poster Session: Time-MoE
 - Tomorrow (3 5:30 p.m. <u>26 April</u>) Hall 3 + Hall 2B #318

