

DSPO: Direct Score Preference Optimization for Diffusion Model Alignment

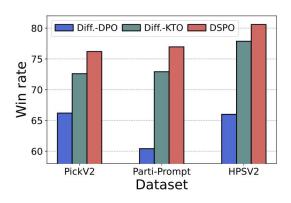
Huaisheng Zhu, Teng Xiao, Vasant Honavar

tl;dr: a score-matching-based perspective for designing empirically effective alignment algorithms for diffusion models

Diffusion-DPO

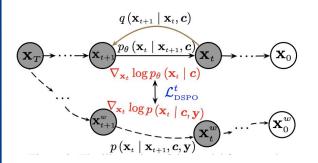
$$-\mathbb{E}\left[\log\sigma\left(\lambda\log\frac{p_{\theta}\left(\mathbf{x}_{t}^{w}\mid\mathbf{x}_{t+1}^{w},\boldsymbol{c}\right)}{p_{\mathrm{ref}}\left(\mathbf{x}_{t}^{w}\mid\mathbf{x}_{t+1}^{w},\boldsymbol{c}\right)}-\lambda\log\frac{p_{\theta}\left(\mathbf{x}_{t}^{l}\mid\mathbf{x}_{t+1}^{l},\boldsymbol{c}\right)}{p_{\mathrm{ref}}\left(\mathbf{x}_{t}^{l}\mid\mathbf{x}_{t+1}^{l},\boldsymbol{c}\right)}\right)\right]$$

Con: It adapts DPO from LLMs, but the upper-bounded loss on diffusion models may limit performance.



Win-rate (vs SD15) for DSPO and preference learning baselines based on Aesthetics reward. "Diff." represents "Diffusion"

DSPO: Score-based Preference Alignment



Human Preference Score Model:

$$\nabla_{\mathbf{x}_{t}} \log p_{\theta}\left(\mathbf{x}_{t} \mid \boldsymbol{c}, \mathbf{y}\right) = \nabla_{\mathbf{x}_{t}} \log p_{\theta}\left(\mathbf{x}_{t} \mid \boldsymbol{c}\right) + \nabla_{\mathbf{x}_{t}} \log p\left(\mathbf{y} \mid \mathbf{x}_{t}, \boldsymbol{c}\right)$$

c is the conditional variable of human preference for the image.

Direct Score Preference Optimization:

$$\min_{\theta} \omega(t) \left\| \nabla_{\mathbf{x}_{t}} \log p_{\theta} \left(\mathbf{x}_{t} \mid \boldsymbol{c} \right) - \left(\nabla_{\mathbf{x}_{t}} \log p \left(\mathbf{x}_{t} \mid \boldsymbol{c} \right) + \gamma \nabla_{\mathbf{x}_{t}} \log p \left(\mathbf{y} \mid \mathbf{x}_{t}, \boldsymbol{c} \right) \right) \right\|_{2}^{2}$$

Final Objective:

$$\mathcal{L}_{\mathrm{DSPO}}^{t} = A(t) \left\| \boldsymbol{\epsilon}_{\theta,t+1} - \boldsymbol{\epsilon}_{t+1} - \lambda \gamma \left(1 - \sigma \left(r\left(\boldsymbol{c}, \mathbf{x}_{t} \right) - r\left(\boldsymbol{c}, \mathbf{x}_{t}^{l} \right) \right) \left(\boldsymbol{\epsilon}_{\theta,t+1} - \boldsymbol{\epsilon}_{\mathrm{ref},t+1} \right) \right) \right\|_{2}^{2}$$

$$r\left(\mathbf{x}_{t}, \boldsymbol{c}\right) = -\left(\left\|\boldsymbol{\epsilon}_{\theta}\left(\boldsymbol{x}_{t+1}, t+1\right) - \boldsymbol{\epsilon}_{t+1}\right\|_{2}^{2} - \left\|\boldsymbol{\epsilon}_{\text{ref}}\left(\boldsymbol{x}_{t+1}, t+1\right) - \boldsymbol{\epsilon}_{t+1}\right\|_{2}^{2}\right)$$

Pro: designed from score matching and achieving good results

How does DSPO perform?

Results: Among all methods, our DSPO achieves the best performance on 3 datasets based on win rate from reward models.

Stable Diffusion 1.5:

Dataset	Method	Pick Score	HPS	Aesthetics	CLIP	Image Reward
PickV2	SFT	70.20	84.20	75.80	61.20	76.40
	DiffDPO	71.60	70.20	66.20	58.80	63.60
	DiffKTO	71.40	84.40	72.60	60.02	77.00
	DSPO	73.60	84.80	76.20	61.80	78.00
Parti-Prompt	SFT	64.27	85.72	75.74	54.72	71.38
	DiffDPO	61.18	66.48	60.42	55.45	62.19
	DiffKTO	64.80	86.16	72.92	54.34	71.51
	DSPO	65.32	87.50	76.96	54.86	71.75
HPSV2	SFT	79.03	91.97	78.56	60.47	80.78
	DiffDPO	76.06	72.13	66.00	58.50	64.22
	DiffKTO	79.18	92.15	77.87	59.28	81.96
	DSPO	79.90	92.56	80.59	61.13	82.31

Stable Diffusion XL:

Dataset	Method	Pick Score	HPS	Aesthetics	CLIP	Image Reward
PickV2	SFT	20.80	40.60	23.20	44.80	34.40
	DiffDPO	75.20	76.20	54.10	59.40	65.20
	MaPO	54.40	69.60	68.20	51.20	61.40
	DSPO	74.00	80.00	54.20	59.60	68.60
Parti-Prompt	SFT	17.03	33.02	27.81	36.58	37.18
	DiffDPO	65.44	74.08	56.86	60.54	66.85
	MaPO	58.34	66.54	68.23	47.43	58.64
	DSPO	67.46	81.80	57.84	55.02	73.47
HPSV2	SFT	18.18	45.28	26.72	39.13	47.22
	DiffDPO	70.31	80.81	50.78	59.31	68.75
	MaPO	59.62	77.90	62.31	50.90	62.09
	DSPO	72.59	83.47	51.41	57.34	70.09

Takeaway: a novel score-based preference alignment algorithm to fine-tune text-to-image diffusion models (see our paper for details).

