
Ferret-UI 2: Mastering Universal User Interface Understanding Across Platforms

Zhangheng Li², Keen You¹, Haotian Zhang¹, Di Feng¹, Harsh Agrawal¹, Xiujun Li¹, Mohana Prasad Sathya Moorthy¹, Jeffrey Nichols¹, Yinfei Yang¹, Zhe Gan¹

²The University of Texas at Austin (work done during internship at Apple)

Introduction

Building a generalist model for user interface (UI) understanding is challenging due to various foundational issues, such as platform diversity, resolution variation, and data limitation. In this paper, we introduce Ferret-UI 2, a multimodal large language model (MLLM) designed for universal UI understanding across a wide range of platforms, including iPhone, Android, iPad, Webpage, and AppleTV. Building on the foundation of Ferret-UI, Ferret-UI 2 introduces three key innovations: support for multiple platform types, high-resolution perception through adaptive scaling, and advanced task training data generation powered by GPT-40 with set-of-mark visual prompting. These advancements enable Ferret-UI 2 to perform complex, user-centered interactions, making it highly versatile and adaptable for the expanding diversity of platform ecosystems.

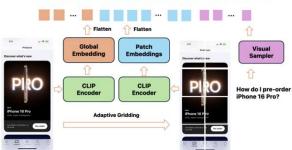
Query with task

GPT-4o

ulti-round Perception QA · Caption-based grounding

Interactivity understanding Task-oriented next step pred

Widget status and context awaren



Example of set-of-mark visual prompting augmented screenshot (left) and one of its generated advanced task training examples (right).

Model Architecture

You can tap on the Pre-Order button at [980, 765, 1011, 796].

Algorithm 1: Adaptive N-gridding **Require:** Original resolution: w × h, grid size: 336×336 , size limit N **Ensure:** Optimal gridding size N_w and N_h $(N_w, N_h \in \mathbb{N}^+)$

1: $N_{w_{\text{best}}}$, $N_{h_{\text{best}}} \leftarrow 0$, $\Delta_{\text{best}} \leftarrow \infty$, $N_{w_0} \leftarrow \frac{\dot{w}}{336}$, $N_{h_0} \leftarrow \frac{h}{336}$ 2: for $N_w = 1$ to N do > Traverse all grid configuraations for $N_h = 1$ to $N - N_w$ do $\Delta_{aspect} \leftarrow \sqrt{\left|\frac{N_{w}}{N_{h}} - \frac{N_{w_0}}{N_{h_0}}\right| \left|\frac{N_{h}}{N_{w}} - \frac{N_{h_0}}{N_{w_0}}\right|}$ $N_w \times N_h - N_{w_0} \times N_{h_0}$

if $\Delta_{\mathrm{best}} > \Delta_{\mathrm{aspect}} \times \Delta_{\mathrm{pixel}}$ then $(N_{w_{\mathrm{best}}}, N_{h_{\mathrm{best}}}) \leftarrow (N_{w}, N_{h})$

 $\Delta_{best} \leftarrow \Delta_{aspect} \times \Delta_{pixel}$ end for

11: end for 12: return $(N_{w_{bost}}, N_{h_{bost}})$

We introduce adaptive N-gridding to decide optimial gridding config under constrained budget (Grid number limit N).

Det relative pixel change for resizing

Experiments

Results on our constructed benchmarks for elementary and advanced tasks, as well as the GUIDE benchmark (Chawla et al., 2024). Results on elementary and advanced tasks are averaged over all platforms, including iPhone, Android, iPad, Webpage, and AppleTV. Each platform includes 6 elementary tasks and 3 advanced tasks. SeeClick model (Cheng et al., 2024) trained on their original data is compared. (†) In tasks that require referring, GPT-40 is equipped with set-of-mark (SoM) prompting by adding a red rectangular box to screenshots for the referred widget. Note that SoM visual prompting is not used for Ferret-UI and Ferret-UI 2.

Model	Backbone	Elementary		Advanced		GUIDE Bench	
ouci		Refer	Ground	GPT-40 Score	Multi-IoU	BertScore	IoU
Ferret-UI	Vicuna-13B	64.15	57.22	45.81	18.75	41.15	26.91
Ferret-UI 2	Gemma-2B	75.20	78.13	80.25	40.51	83.71	51.13
	Llama3-8B	80.28	82.79	89.73	41.15	91.37	55.78
	Vicuna-13B	81.34	81.31	86.25	41.71	88.81	54.71
SeeClick (Cheng et al., 2024)	QWen-VL-9.6B	51.58	62.82	67.49	21.56	54.70	39.51
GPT-40		56.47	12.14	77.73	7.06	75.31	9.64
GPT-40 + SoM-Prompt [†]	-	87.91	-	84.33	7.36	into i	=

Zero-shot performance of Ferret-UI 2 on the GUI-World benchmark (Chen et al., 2024a).

M-3-1	GPT-4 Score					
Model	iOS	Android	Webpage	Average		
MiniGPT4Video (Ataallah et al., 2024)	1.501	1.342	1.521	1.455		
VideoChat2 (Li et al., 2024a)	2.169	2.119	2.221	2.170		
Chat-Univi (Jin et al., 2024)	2.337	2.390	2.349	2.359		
GUI-Vid (Chen et al., 2024a)	2.773	2.572	2.957	2.767		
QWen-VL-MAX (Bai et al., 2023)	2.779	2.309	2.656	2.580		
SeeClick Cheng et al. (2024)	2.614	2.650	2.848	2.704		
Ferret-UI (You et al., 2024)	2.713	2.791	2.411	2.638		
Ferret-UI 2	2.881	2.954	3.013	2.948		
Gemini-Pro 1.5 (Reid et al., 2024)	3.213	3.220	3.452	3.295		
GPT-40	3.558	3.561	3.740	3.619		

Ablation

Zero-shot cross-platform transfer results of Ferret-UI 2 demonstrate the original domain gaps between different platforms.

Training	Test - Referring					Test - Grounding				
	iPhone	iPad	AppleTV	Web	Android	iPhone	iPad	AppleTV	Web	Android
iPhone	86.3	68.1	31.2	45.3	71.2	84.1	65.2	43.1	51.7	63.1
iPad	67.5	80.2	40.7	51.5	63.3	64.5	82.1	32.1	38.5	53.8
AppleTV	29.1	45.1	79.3	54.2	36.4	33.7	41.2	81.6	52.1	29.7
Web	59.2	57.4	41.2	85.5	41.7	54.0	51.2	46.5	87.5	45.9
Android	72.5	60.7	35.7	51.2	86.2	66.7	48.9	29.7	44.1	83.9

Comparison of two gridding strategy: AnyRes from LLaVA v.s. Adaptive N-gridding

Training Data	Model	iPho	ne vI	iPhone v2		
	Model	GPT-4o Score	Multi-IoU	GPT-4o Score	Multi-IoU	
iPhone v1	Ferret-UI-anyRes	91.3	36.89	68.3	27.13	
	Ferret-UI 2	93.7 (+2.4)	37.12 (+0.23)	70.2 (+1.9)	28.21 (+1.08)	
iPhone v2	Ferret-UI-anyRes	86.2	35.89	85.97	39.81	
	Ferret-UI 2	88.1 (+1.9)	36.43 (+0.54)	89.7 (+3.73)	41.73 (+1.92)	

Conclusion

With multi-platform support, highresolution image encoding, and improved data generation, Ferret-UI 2 demonstrates strong zero-shot transferability across platforms, establishing it as a solid foundation for universal UI understanding.