

Looking Backward: Streaming Video-to-Video Translation with Feature Banks

ICLR 2025

Feng (Jeff) Liang, Akio Kodaira, Chenfeng Xu, Masayoshi Tomizuka, Kurt Keutzer, Diana Marculescu

Challenges of traditional video-to-video

Input video

Pre-defined filters
[Source: clideo]

Grayscale output video

Traditional filter-based video-to-video translation is **single-modal**:

- Video as the only input
- Limited filters with poor editing capabilities

Text-prompted video-to-video

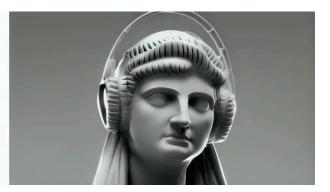
Input video

Prompt:A pixel art of an artist's
rendering of an earth in space.

Prompt:An artist's rendering
of a Mars in space

Input video

Prompt:a woman wearing headphones
in flat 2d anime.



Prompt:a Greek statue wearing
headphones.

Video-to-video method comparison

	Traditional filters	Existing diffusion models [1-6]
Pros 🗸	Real-time processing Unlimited length	Easy use with natural language Good edit capability
Cons X	Limited filters Bad edit capability	Only handle limited length, e.g., 4 sec Extremely slow, 1 min processing for one 4 sec edit

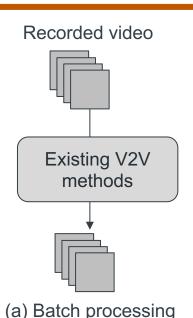
^[1] Wu, Jay Zhangjie, et al. "Tune-a-video: One-shot tuning of image diffusion models for text-to-video generation." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023. [2] Qi, Chenyang, et al. "Fatezero: Fusing attentions for zero-shot text-based video editing." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023.

^[3] Zhang, Yabo, et al. "Controlvideo: Training-free controllable text-to-video generation." arXiv preprint arXiv:2305.13077 (2023).

^[4] Geyer, Michal, et al. "Tokenflow: Consistent diffusion features for consistent video editing." arXiv preprint arXiv:2307.10373 (2023).

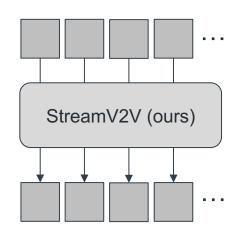
^[5] Ouyang, Hao, et al. "Codef: Content deformation fields for temporally consistent video processing." arXiv preprint arXiv:2308.07926 (2023). [6] Liang, Feng, et al. "FlowVid: Taming Imperfect Optical Flows for Consistent Video-to-Video Synthesis." arXiv preprint arXiv:2312.17681 (2023).

Batch and stream processing



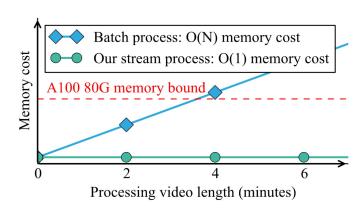
All frames loaded into GPU and processed in a batch

Real-time video



(b) Stream processing

Process frame by frame so that we can handle unlimited frames in real-time



(c) Memory consumption comparsion

StreamV2V realtime demo on RTX 4090

Stop

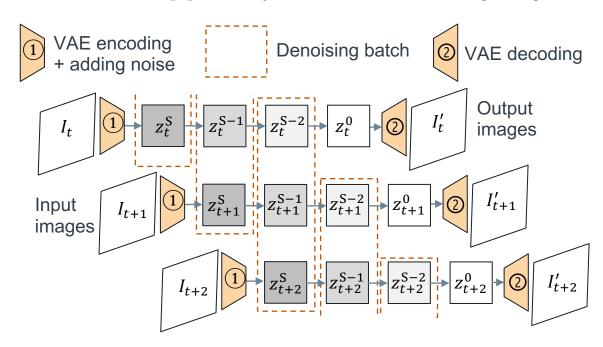
Promp

A man is talking

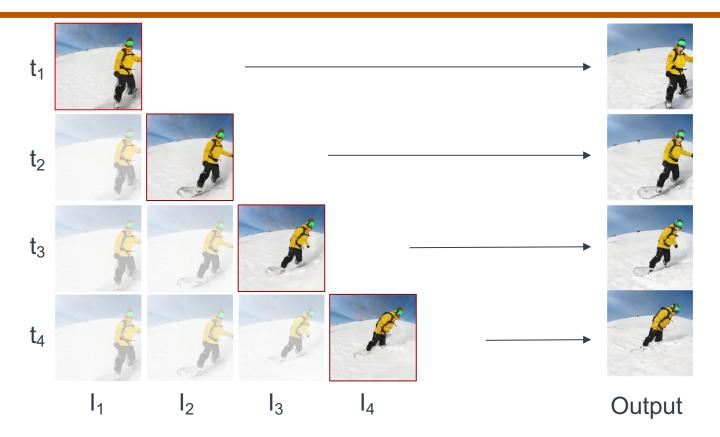
Our StreamV2V supports face swap (e.g., to Elon Musk or Will Smith) and video stylization (e.g., to Claymation or doodle art)

Our starting point: StreamDiffusion + LCM

LCM [1] can generate images with 1-4 steps
StreamDiffusion [2] batchify the LCM for streaming images

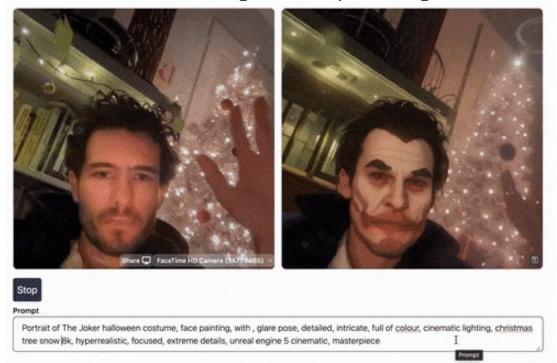


StreamDiffusion is an img2img model

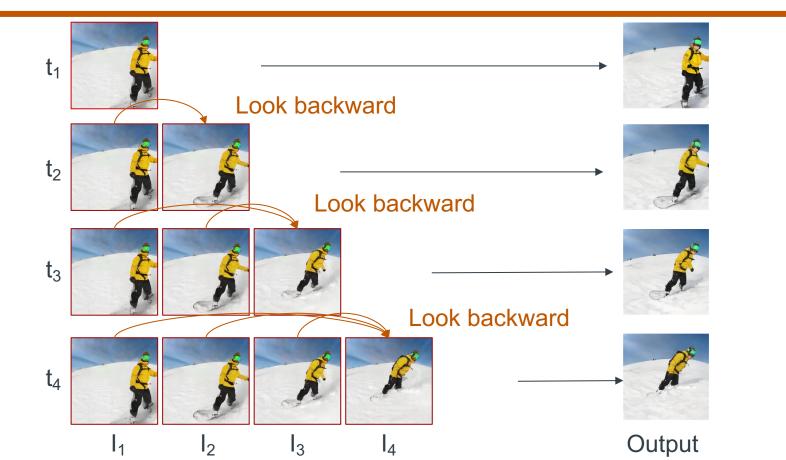


StreamDiffusion has poor consistency

However, StreamDiffusion is an image model, producing inconsistent outcome

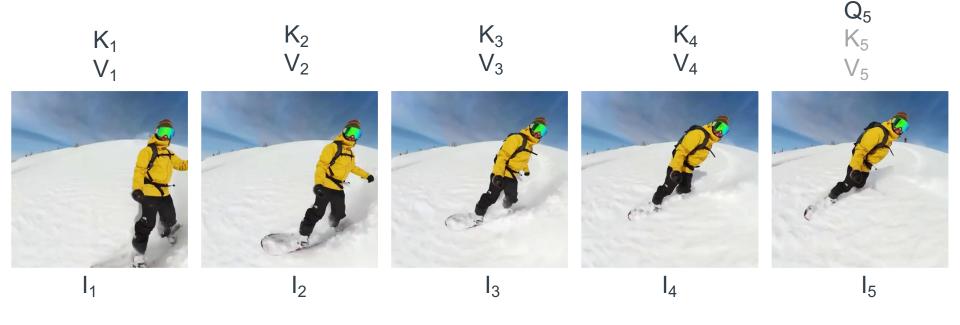


Looking backward to improve consistency



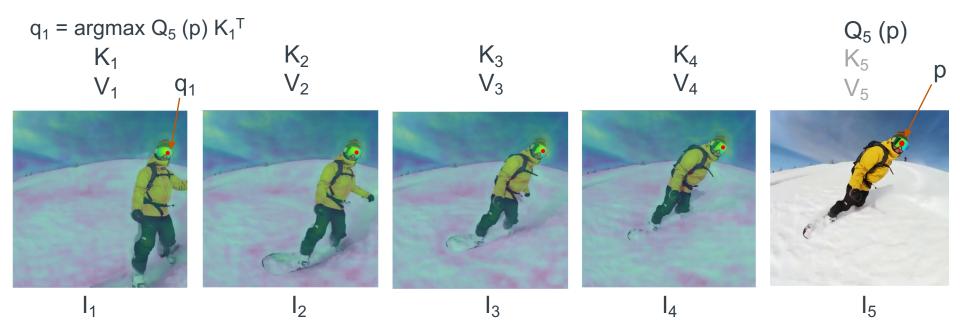
"Looking backward" with diffusion features

Cached self-attention diffusion features



Diffusion features have semantic correspondace

Find the point $q_n = \operatorname{argmax} Q_5$ (p) K_n^T where n = 1,2,3,4



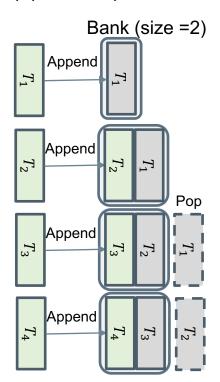
The cached self-attention diffusion features contain rich semantic correspondence

Maintain a feature bank to track information



Dynamic merging for bank updates

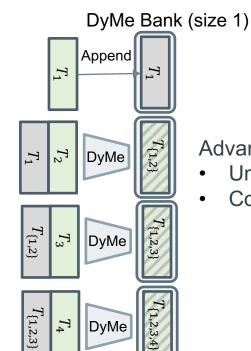
(a) Naïve queue



Problems of queue bank

- Limited span
- Redundant features

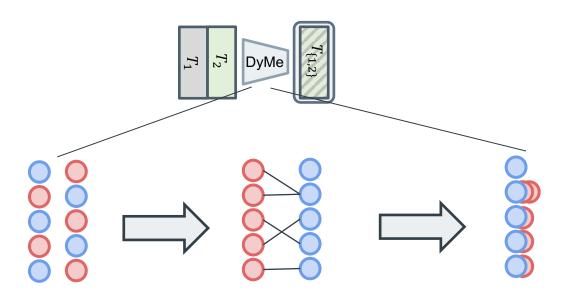
(b) Dynamic merging (ours)



Advantages of DyMe

- Unlimited span
- Compact size

Dynamic merging for bank updates

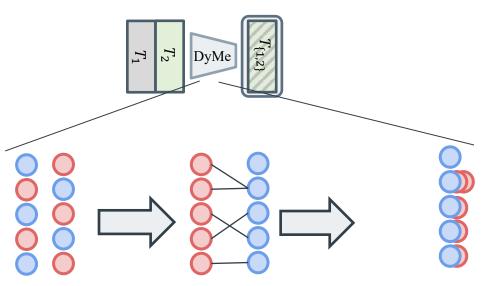


Step1: Randomly split tokens into two groups **Set** *A* and **Set** *B*

Step2: For every token in *Set A*, find its most similar token in *Set B*

Step3: Merge *Set A* to *Set B* by averaging

Dynamic merging for bank updates



Step1: Randomly split tokens into two groups *Set A* and *Set B*

Step2: For every token in **Set** A, find its most similar token in **Set** B

Step3: Merge *Set A* to *Set B* by averaging

Experiments: Quantitative results

Our evalution dataset contains 18 DAVIS videos and 67 video-prompt pairs

Table 1: **Quantitative metrics comparison.** We report the CLIP score and warp error to indicate the consistency of generated videos. We bold the **best** result and underline the <u>second best</u>.

	StreamDiffusion	CoDeF	Rerender	TokenFlow	FlowVid	StreamV2V (ours)
CLIP score ↑ Warp error ↓	95.24 117.01	96.33 116.17	96.20 107.00	97.04 114.25	<u>96.68</u> 111.09	96.58 102.99

CLIP score*: TokenFlow > FlowVid > StreamV2V > CoDeF > Rerender > StreamDiffusion

Warp error*: StreamV2V < Rerender < FlowVid < TokenFlow < CoDeF < StreamDiffusion

^{*} Quantitative metrics of generative models cannot directly translate to the performance

Experiments: Qualitative comparison

Prompt: A pixel art of a man doing a handstand on the street

Input video

StreamV2V (ours)

CoDeF [2] Rerender [3]

StreamDiffusion [1]

FlowVid [4]

^[1] Kodaira, Akio, et al. "StreamDiffusion: A Pipeline-level Solution for Real-time Interactive Generation." arXiv preprint arXiv:2312.12491 (2023). [2] Ouyang, Hao, et al. "Codef: Content deformation fields for temporally consistent video processing." arXiv preprint arXiv:2308.07926 (2023).

^[3] Yang, Shuai, et al. "Rerender a video: Zero-shot text-guided video-to-video translation." SIGGRAPH Asia 2023 Conference Papers. 2023.

^[4] Liang, Feng, et al. "FlowVid: Taming Imperfect Optical Flows for Consistent Video-to-Video Synthesis." arXiv preprint arXiv:2312.17681 (2023).

Experiments: User study results

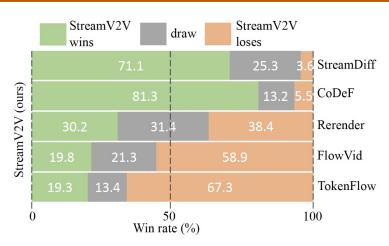


Figure 6: **User study comparison.** The win rate indicates the frequency our StreamV2V is preferred compared with certain counterpart.

Regarding performance, StreamV2V is

- Better than StreamDiffusion, CoDeF
- Comparable with Rerender
- Worse than FlowVid, TokenFloe

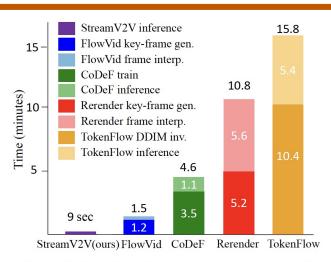


Figure 7: **Runtime breakdown** on one A100 GPU of generating a 4-second 512x512 resolution video with 30 FPS.

Regarding speed, StreamV2V is

- 10X faster than FlowVid
- 72X faster than Rerender
- 100X faster than TokenFlow

Ablation : EA and FF

Extended self-Attention (EA) and Feature Fusion (FF)

Warp Error: 85.2 Warp Error: 74.0 Warp Error: 80.4 Warp Error: 73.4

Summary of StreamV2V

- StreamV2V is the one of the first approaches to tackle real-time video-to-video translation for streaming videos
- StreamV2V employs a simple yet effective looking-backward principle by maintaining a feature bank to improve consistency
- StreamV2V develop a dynamic feature bank updating strategy that merges redundant features, ensuring the feature bank remains both compact and descriptive