

Last Layer Empirical Bayes

ICLR

Valentin Villecroze, Yixin Wang, Gabriel Loaiza-Ganem

Layer 6 AI, Toronto University of Michigan

Abstract

- We introduce **LLEB**, a well-motivated method for uncertainty quantification (**UQ**) in neural networks.
- LLEB is based on an interpretation of ensembles as **empirical Bayes** [1].
- LLEB performs on par, but does not outperforms, existing UQ approaches.

Background on UQ

- For a classifier $p(y|x,\theta)$, UQ methods provide a **distribution** $q^*(\theta)$ **over weights 0**, rather than a single θ^* , e.g.:
 - \circ MC dropout [2]: $q^*(\theta)$ is obtained by keeping dropout on at test time.
 - Bayesian neural networks use variational inference to optimize the ELBO,

$$\mathbb{E}_{q^*(heta)}[\log p(\mathcal{D}| heta)] - \mathbb{KL}(q(heta)\|\pi(heta))$$

• Deep ensembles [3]: M models are independently trained and $q^*(\theta)$ is given by equally weighting each model, i.e.

$$q^*(heta) = \sum_{m=1}^M \delta_{ heta_m^*}(heta)$$

- Ensembles are expensive to train but are often considered the gold standard for UQ.
- Averaging over $q^*(\theta)$, i.e. $p(y|x) = \mathbb{E}_{q^*(\theta)}[p(y|x,\theta)]$, is used to make predictions.
- The variability of predictions over $\theta \sim q^*(\theta)$ quantifies uncertainty, e.g. $\sum {\rm var}_{q^*(\theta)}[p(y|x,\theta)]$

• LLEB is a way to obtain a new $q^*(\theta)$ using normalizing flows.

Results

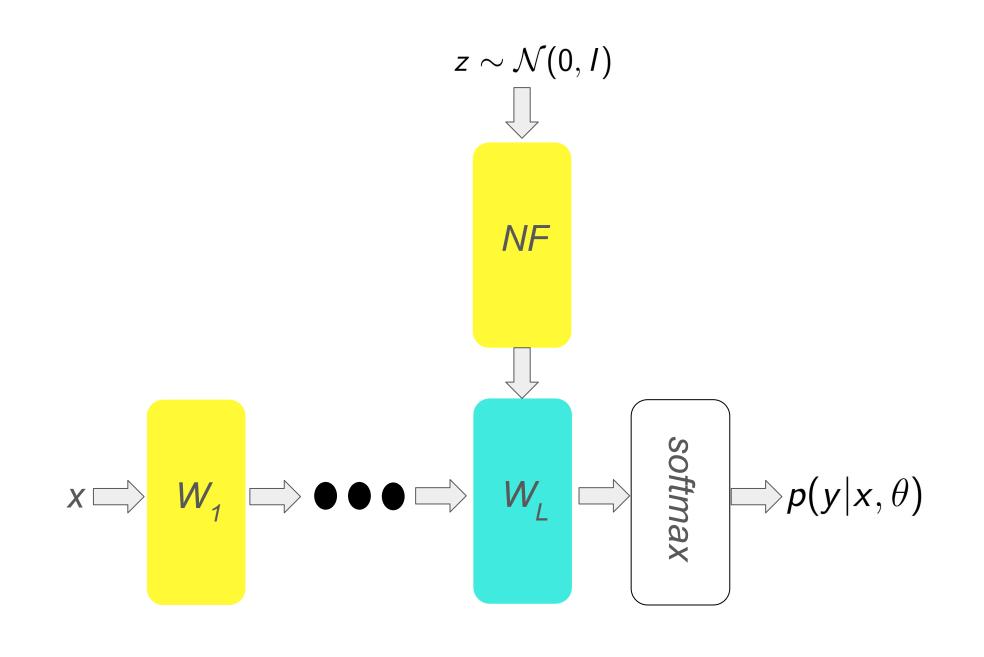
2)

Last Layer Empirical Bayes

- We train $q^*(\theta)$ as a normalizing flow.
 - The flow can be trained along with the classifier or using a pre-trained and fixed classifier.
 - The training objective is given by:

$$\max_{q} \mathbb{E}_{q(heta)}[\log p(\mathcal{D}| heta)]$$

- o For tractability, we only use the flow on the last layer.
 - Defining $q^*(\theta)$ only on the last layer has worked elsewhere in UQ [4].



Why is LLEB sensible?

- Intuitively, the flow prevents collapse onto a point mass and allows to find a distribution over optimal parameter configurations.
- The prior $\pi(\theta)$ in the ELBO is usually fixed, learning it is called **empirical Bayes**.
 - If the ELBO is also optimized over the prior $\pi(\theta)$, then $\pi^*(\theta)$ and $q^*(\theta)$ are optimal if and only if:
 - $\blacksquare \pi^*(\theta) = q^*(\theta)$
- This is implicitly what ensembles do: they maximize the ELBO with an infinitely flexible prior [1].
- LLEB attempts to optimize this objective with a more adequately strong prior.

Train/Test: MNIST, OOD: Fashion-MNIST Train/Test: Fashion-MNIST, OOD: MNIST Method ECE (↓) AUC (↑) Acc. (†) Acc. (†) $ECE(\downarrow)$ AUC (†) 98.02 ± 0.05 0.00 ± 0.00 0.01 ± 0.00 88.02 ± 0.10 Default 0.66 ± 0.00 $\boldsymbol{0.82 \pm 0.01}$ LLL 0.75 ± 0.00 $\boldsymbol{0.96 \pm 0.00}$ 88.02 ± 0.10 98.02 ± 0.05 **MCD** $\mathbf{98.50} \pm \mathbf{0.05}$ 0.01 ± 0.00 0.91 ± 0.00 $\mathbf{88.47} \pm \mathbf{0.05}$ 0.02 ± 0.00 0.75 ± 0.03 LLEB (ours) 0.00 ± 0.00 0.95 ± 0.01 87.83 ± 0.37 $\boldsymbol{0.01 \pm 0.00}$ 0.72 ± 0.03 97.74 ± 0.24 0.84 ± 0.01 Default (M = 5) 98.26 ± 0.02 0.01 ± 0.00 0.97 ± 0.00 88.71 ± 0.09 $\mathbf{0.02} \pm \mathbf{0.00}$ LLL(M=5) 98.26 ± 0.02 0.76 ± 0.00 0.96 ± 0.00 88.71 ± 0.09 0.67 ± 0.00 0.87 ± 0.01 MCD (M = 5) 98.69 ± 0.02 0.02 ± 0.00 0.95 ± 0.00 89.34 ± 0.08 0.04 ± 0.00 $\boldsymbol{0.89 \pm 0.00}$ $0.01 \pm 0.00 \quad 0.97 \pm 0.00$ 0.03 ± 0.00 LLEB (M = 5, ours) 98.30 ± 0.08 $\mathbf{89.44} \pm \mathbf{0.16}$ $\boldsymbol{0.89 \pm 0.01}$

	Train/Test: CIFAR-10, OOD: SVHN			Train/Test: SVHN, OOD: CIFAR-10		
Method	Acc. (†)	ECE (↓)	AUC (†)	Acc. (†)	ECE (↓)	AUC (↑)
Default	92.82 ± 0.09	0.05 ± 0.00	-:	95.26 ± 0.03	0.03 ± 0.00	-
LLL	92.82 ± 0.09	0.70 ± 0.00	$\boldsymbol{0.94 \pm 0.01}$	95.26 ± 0.03	0.73 ± 0.00	$\boldsymbol{0.92 \pm 0.00}$
MCD	92.29 ± 0.09	0.10 ± 0.01	0.89 ± 0.02	95.11 ± 0.05	0.09 ± 0.01	0.89 ± 0.00
LLEB (ours)	92.85 ± 0.09	0.06 ± 0.00	$\boldsymbol{0.94 \pm 0.01}$	95.23 ± 0.03	$\boldsymbol{0.02 \pm 0.01}$	0.86 ± 0.01
Default $(M = 5)$	94.82 ± 0.01	0.01 ± 0.00	0.91 ± 0.01	96.55 ± 0.03	0.01 ± 0.00	0.97 ± 0.00
LLL (M = 5)	94.82 ± 0.01	0.73 ± 0.00	0.90 ± 0.01	96.55 ± 0.03	0.74 ± 0.00	0.97 ± 0.00
MCD (M = 5)	94.72 ± 0.04	0.12 ± 0.00	0.93 ± 0.01	96.54 ± 0.02	0.11 ± 0.00	$\boldsymbol{0.98 \pm 0.00}$
LLEB $(M = 5, ours)$	94.78 ± 0.01	$\boldsymbol{0.01 \pm 0.00}$	$\boldsymbol{0.95 \pm 0.01}$	96.52 ± 0.03	$\boldsymbol{0.01 \pm 0.00}$	$\boldsymbol{0.98 \pm 0.00}$

References

- [1] Deep Ensembles Secretly Perform Empirical Bayes, Loaiza-Ganem et al., 2025
- [2] Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, Gal and Ghahramani, ICLR 2016
- [3] Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles, Lakshminarayanan et al., NeurIPS 2017
- [4] Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLu networks, Kristiadi et al., ICLR 2020