Analysis of Neural ODE Performance in Long-term PDE Sequence Modeling

Authors: Fang Sun*, Maxwell Dalton*, Yizhou Sun (*Equal Contribution)
Computer Science Department, UCLA

Problem Definition:

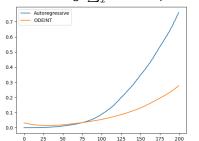
Task: To learn a predictor M that maps the first L snapshots to the next K snapshots (for a 1D PDE system discretized on N spatial cells):

$$\hat{\mathbf{u}}^{(t_{L+1}:t_{L+K})} = \mathcal{M}\left(\mathbf{u}^{(t_1:t_L)}\right).$$

Autoregressive Model

Neural ODE

Autoregressive GNN-based architectures predict each step sequentially, leading to error accumulation, whereas Neural ODEs model the dynamics continuously, mitigating compounding errors.


Experiment Results:

Dataset: Burger's equation (without diffusion), 25→200 prediction task **RQ1:** Sequence recovery accuracy

Method	$\frac{1}{n_x} \sum_{x,t} \text{MSE} \downarrow$
MP-PDE	1.2176
Ours	0.5267

RQ2: Long term prediction stability

Comparison of average \sum_x MSE loss per timestep

