LOGLO-FNO

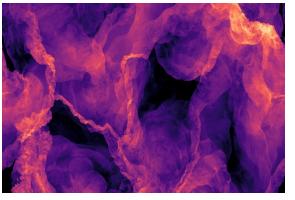
Efficient Learning of Local and Global Features in Fourier Neural Operators

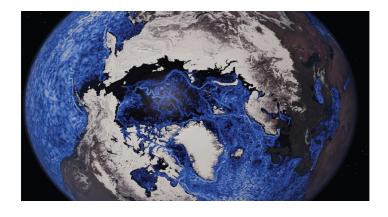
Marimuthu Kalimuthu*, David Holzmüller, Mathias Niepert

*(firstname.lastname@ki.uni-stuttgart.de)

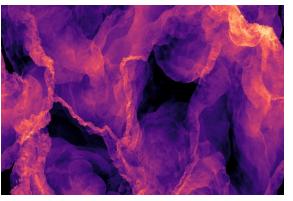
Presenter: Daniel Musekamp

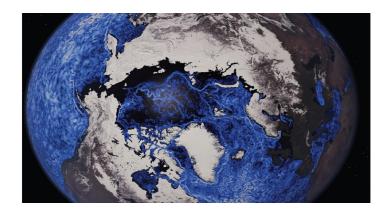
University of Stuttgart, Stutgart Center for Simulation Science (SimTech), International Max Planck Research School for Intelligent Systems (IMPRS-IS), Inria Paris, École Normale Supérieure PSL University, NEC Labs Europe





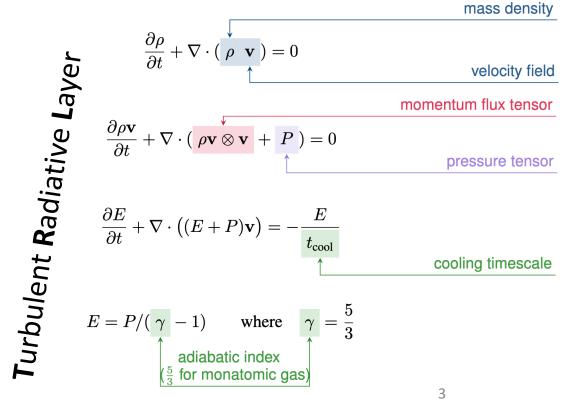
Real-World Physical Phenomena

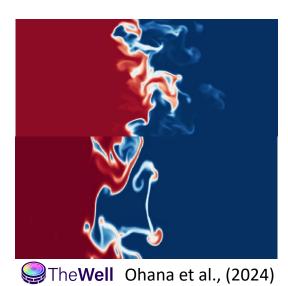



Astrophysical Processes – Star and Cold Gas Formation

Ocean and Atmospheric Circulation

Real-World Physical Phenomena


Astrophysical Processes – Star and Cold Gas Formation

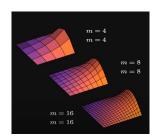

Ocean and Atmospheric Circulation

Governed by Partial Differential Equations such as Navier-Stokes & Shallow-Water equations.

Partial Differential Equations (PDEs)

Fluid Mechanics

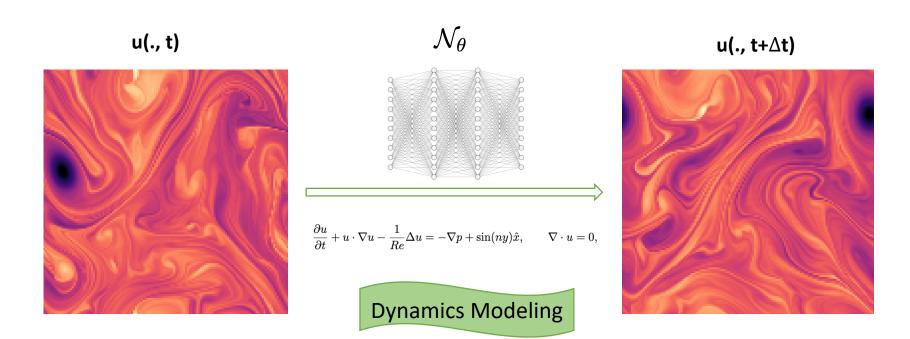
considered on a given,


- domain **D**
- time interval [0, T)

Solving Partial Differential Equations

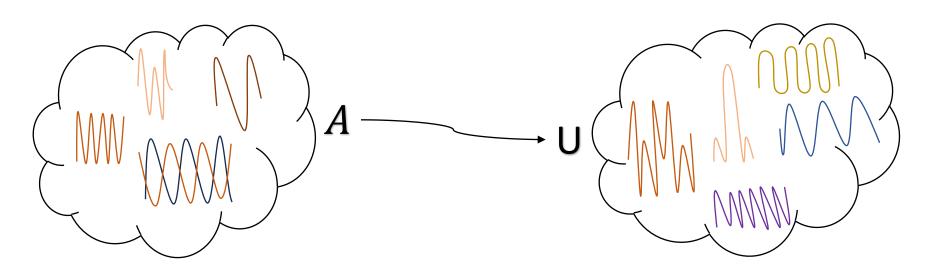
(using neural networks)

One popular approach involves

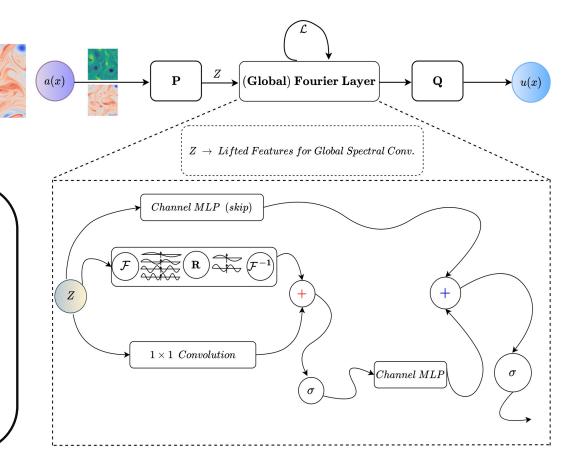


- (ii) Obtaining trajectories using classical numerical solvers
- (iii) Training neural networks to predict future states given past state(s)

$$\theta^* = \arg\min_{\theta} \sum_{n=1}^{N} \sum_{t=1}^{T-1} \mathcal{C}(\mathcal{N}_{\theta}(u^t), u^{t+1})$$



Forward Problem: Dynamics Modeling


Solving PDEs: Neural Operators

 $\mathcal{G}^{\dagger}:\mathcal{A}
ightarrow\mathcal{U}$ => (Non-linear map between function spaces)

$$\mathcal{G}_{ heta}: \mathcal{A} o \mathcal{U}, \quad heta \in \mathbb{R}^p \quad$$
 => Learn an approximation so that $\mathcal{G}_{ heta^\dagger} pprox \mathcal{G}^\dagger$

FNO: Fourier Neural Operator

Global Spectral Convolution

- Operates on the full spatial resolution
- High-frequency Fourier modes excluded

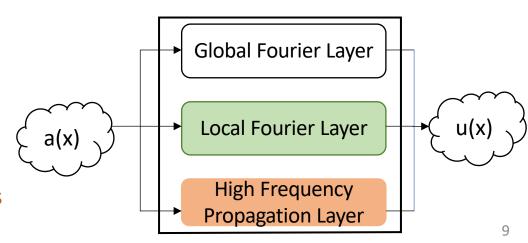
Limitations

- Cannot effectively model local features
- Cannot model high frequencies
- Struggles with modeling turbulence

Research Question

How can we model local features and high-frequencies without major changes to FNO architecture? (i.e., a plug-and-play module, parameter-efficient)

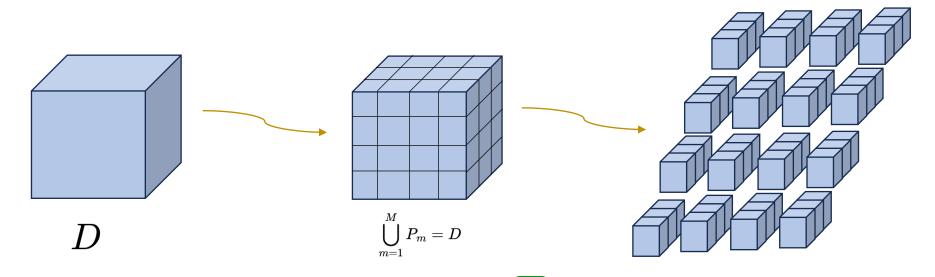
Research Question


How can we model local features and high-frequencies without major changes to FNO architecture? (i.e., a plug-and-play module, parameter-efficient)

Ideas:

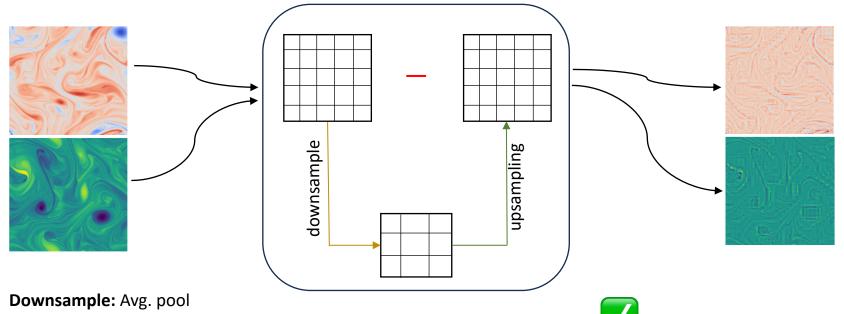
Introduce additional parallel branches to

Achieve local convolution


Extract & propagate high-frequencies

IDEA (1): Enhance FNO with Local Spectral Convolution

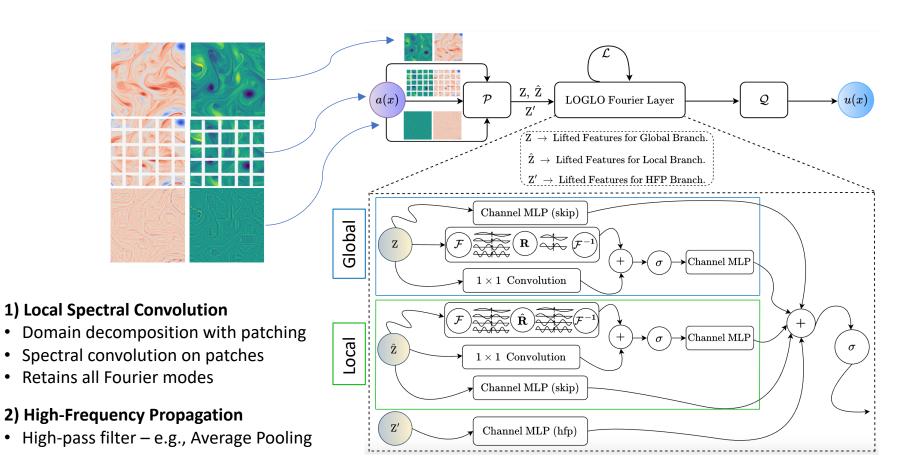
Step 1: Decompose the domain into subdomains (e.g., patches: 8x8, 16x16)


Step 2: Perform spectral convolution on these patches

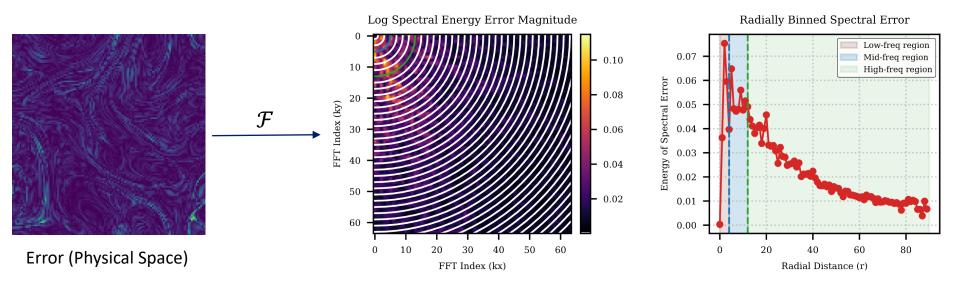
IDEA (2): Enhance FNO with High Frequency Propagation

Step 1: Extract high-frequency features

Step 2: Propagate them in a parallel branch



Upsample: Interpolation


High-frequency features modeled

Proposed: LOGLO-FNO Architecture

IDEA (3): Spectral Loss with Radially Binned Errors

Combined Objective:
$$\theta^* = \arg\min_{\theta} \sum_{t=1}^{N} \sum_{t=1}^{T-1} \mathcal{C}(\mathcal{N}_{\theta}(u^t), u^{t+1}), \qquad \mathcal{C} = \mathcal{C}_{\mathrm{MSE}} + \lambda \cdot \mathcal{C}_{\mathrm{freq}}, \quad 0 \leq \lambda \leq 1$$

PDEs: 2D and 3D Time-dependent Problems

Kolmogorov flow 2D:

$$\frac{\partial u}{\partial t} + u \cdot \nabla u - \frac{1}{Re} \Delta u = -\nabla p + \sin(ny)\hat{x}, \qquad \nabla \cdot u = 0, \qquad \text{on } [0, 2\pi]^2 \times (0, \infty)$$

$$\nabla \cdot u = 0,$$

on
$$[0,2\pi]^2 \times (0,\infty)$$

Turbulent Radiative Layer 3D:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) = 0$$
$$\frac{\partial \rho \boldsymbol{v}}{\partial t} + \nabla \cdot (\rho \boldsymbol{v} \boldsymbol{v} + P) = 0$$

$$\frac{\partial E}{\partial t} + \nabla \cdot ((E+P)\boldsymbol{v}) = -\frac{E}{t_{\text{cool}}}$$

on
$$x, y \in [-0.5, 0.5], z \in [-1, 1]$$

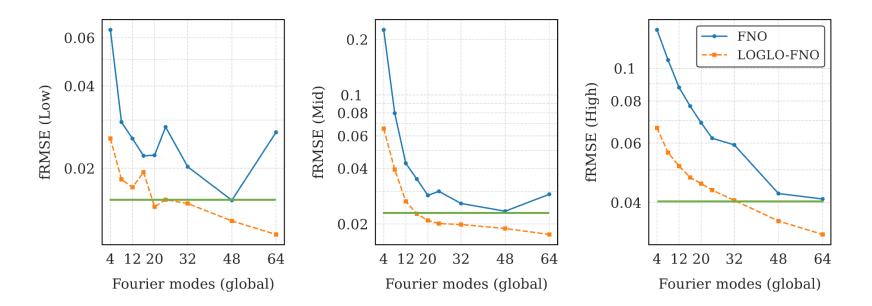
$$t \in [0, 266.172178]$$

$$\frac{\partial u}{\partial t} = D_u \partial_{xx} u + D_u \partial_{yy} u + R_u(u, v), \quad \frac{\partial v}{\partial t} = D_v \partial_{xx} v + D_v \partial_{yy} v + R_v(u, v), \quad (-1, 1)^2 \times (0, 5]$$

2D INS: Kolmogorov flow*

Model	RMSE (↓)	nRMSE	bRMSE	cRMSE	fRMSE(L)	fRMSE(M)	fRMSE(H)	MaxError (↓)	MELR (↓)	WLR (↓)	
1-step Evaluation											
U-Net	$7.17 \cdot 10^{-1}$	$1.3 \cdot 10^{-1}$	$1.47 \cdot 10^0$	$1.74 \cdot 10^{-2}$	$2.24 \cdot 10^{-2}$	$3.57 \cdot 10^{-2}$	$4.39 \cdot 10^{-2}$	$2.01\cdot 10^1$	$1.64 \cdot 10^{-1}$	$1.48 \cdot 10^{-2}$	
FNO	$8.08 \cdot 10^{-1}$	$1.47 \cdot 10^{-1}$	$7.94 \cdot 10^{-1}$	$1.1 \cdot 10^{-2}$	$1.36 \cdot 10^{-2}$	$2.05 \cdot 10^{-2}$	$4.7 \cdot 10^{-2}$	$1.46 \cdot 10^{1}$	$5.2 \cdot 10^{-1}$	$2.83 \cdot 10^{-2}$	
F-FNO	$7.53 \cdot 10^{-1}$	$1.37 \cdot 10^{-1}$	$7.41 \cdot 10^{-1}$	$1.5 \cdot 10^{-2}$	$1.49 \cdot 10^{-2}$	$2.15 \cdot 10^{-2}$	$4.36 \cdot 10^{-2}$	$1.42 \cdot 10^{1}$	$4.74 \cdot 10^{-1}$	$2.28 \cdot 10^{-2}$	
LSM	$7.49 \cdot 10^{-1}$	$1.36 \cdot 10^{-1}$	$1.47\cdot 10^0$	$1.36 \cdot 10^{-2}$			$4.64 \cdot 10^{-2}$	$2.05\cdot 10^1$	$1.43 \cdot 10^{-1}$	$1.68 \cdot 10^{-2}$	
U-FNO	$6.13 \cdot 10^{-1}$	$1.12 \cdot 10^{-1}$	$1.0\cdot 10^0$		$1.27 \cdot 10^{-2}$		$3.71 \cdot 10^{-2}$	$1.64\cdot 10^1$	$1.38 \cdot 10^{-1}$	$1.09 \cdot 10^{-2}$	
NO-LIDK*	$7.25 \cdot 10^{-1}$	$1.33 \cdot 10^{-1}$	$1.12\cdot 10^0$			$2.69\cdot10^{-2}$	$4.55 \cdot 10^{-2}$	$1.65\cdot 10^1$		$1.54\cdot10^{-2}$	
NO-LIDK [⋄]	$6.13 \cdot 10^{-1}$	$1.11 \cdot 10^{-1}$	$5.95 \cdot 10^{-1}$	$1.46 \cdot 10^{-2}$	$1.65 \cdot 10^{-2}$	$2.29\cdot10^{-2}$	$3.91 \cdot 10^{-2}$	$1.5\cdot 10^1$	$9.57\cdot10^{-2}$	$1.1 \cdot 10^{-2}$	
NO-LIDK [†]	$5.86\cdot10^{-1}$	$1.07\cdot 10^{-1}$	$5.64 \cdot 10^{-1}$			$2.46\cdot10^{-2}$		$1.47\cdot 10^1$	$7.11 \cdot 10^{-2}$	$1.0 \cdot 10^{-2}$	
LoGLo-FNO	$5.89 \cdot 10^{-1}$	$1.07 \cdot 10^{-1}$	$6.74 \cdot 10^{-1}$	$\underline{7.23} \cdot 10^{-3}$	$1.21 \cdot 10^{-2}$	$1.81 \cdot 10^{-2}$	$3.54 \cdot 10^{-2}$	${f 1.33}\cdot 10^{1}$	$1.29 \cdot 10^{-1}$	$1.06 \cdot 10^{-2}$	
REL. % DIFF	-27.1 %	-27.21 %	-15.12 %	-34.31 %	-11.22 %	-11.88 %	-24.64 %	-8.99 %	-75.12 %	-62.63 %	
5-step Autoregressive Evaluation											
U-Net	$1.51\cdot 10^0$	$2.65\cdot 10^{-1}$	$2.31\cdot 10^0$	$5.39\cdot 10^{-2}$	$6.53\cdot 10^{-2}$		$9.38\cdot 10^{-2}$	$1.81\cdot 10^{1}$	$2.13\cdot 10^{-1}$	$3.52 \cdot 10^{-2}$	
FNO	$1.33 \cdot 10^{0}$	$2.35 \cdot 10^{-1}$	$1.34 \cdot 10^{0}$	$1.46 \cdot 10^{-2}$	$3.37 \cdot 10^{-2}$	$5.80 \cdot 10^{-2}$	$8.37 \cdot 10^{-2}$	$1.60 \cdot 10^{1}$	$6.18 \cdot 10^{-1}$	$4.93 \cdot 10^{-2}$	
F-FNO	$1.29 \cdot 10^{0}$	$2.28 \cdot 10^{-1}$	$1.27 \cdot 10^{0}$	$2.28 \cdot 10^{-2}$	$3.60 \cdot 10^{-2}$	$5.52 \cdot 10^{-2}$	$8.12 \cdot 10^{-2}$	$1.50 \cdot 10^{1}$	$5.37 \cdot 10^{-1}$	$3.99 \cdot 10^{-2}$	
LSM	$1.81\cdot 10^0$	$3.18\cdot 10^{-1}$	$2.76\cdot 10^0$	$3.87 \cdot 10^{-2}$	$7.6\cdot 10^{-2}$	$1.44 \cdot 10^{-1}$	$1.12\cdot 10^{-1}$	$2.08\cdot 10^1$	$2.04 \cdot 10^{-1}$	$4.39\cdot10^{-2}$	
U-FNO	$1.15\cdot 10^0$	$2.03\cdot 10^{-1}$	$1.45\cdot 10^0$	$6.3 \cdot 10^{-3}$		$5.33\cdot 10^{-2}$	$7.35\cdot10^{-2}$	$1.56\cdot 10^{1}$	$2.01\cdot 10^{-1}$	$2.51\cdot 10^{-2}$	
NO-LIDK*	$1.36\cdot 10^0$	$2.39\cdot 10^{-1}$	$1.8\cdot 10^0$	$1.1\cdot 10^{-2}$	$3.14 \cdot 10^{-2}$	$6.86 \cdot 10^{-2}$	$8.91 \cdot 10^{-2}$	$1.59\cdot 10^1$	$2.23 \cdot 10^{-1}$	$2.93 \cdot 10^{-2}$	
NO-LIDK [⋄]	$1.17\cdot 10^0$	$2.04\cdot 10^{-1}$	$1.12\cdot 10^0$	$1.92\cdot 10^{-2}$	$3.71\cdot 10^{-2}$	$5.96\cdot10^{-2}$	$7.6\cdot 10^{-2}$	$1.61\cdot 10^1$	$1.42\cdot 10^{-1}$	$2.12\cdot 10^{-2}$	
NO-LIDK [†]	$1.17\cdot 10^0$	$2.05\cdot 10^{-1}$	$1.14\cdot 10^0$	$1.23\cdot 10^{-2}$	$3.31\cdot 10^{-2}$	$5.94\cdot10^{-2}$	$7.74\cdot10^{-2}$	$1.56\cdot 10^{1}$	$1.03 \cdot 10^{-1}$	$2.18\cdot 10^{-2}$	
LoGLo-FNO	$1.09 \cdot 10^{0}$	$1.92 \cdot 10^{-1}$	$1.12 \cdot 10^{0}$	$8.99 \cdot 10^{-3}$				${f 1.26}\cdot 10^{1}$	$1.67 \cdot 10^{-1}$	$2.07 \cdot 10^{-2}$	
REL. % DIFF	-18.26 %	-18.39 %	-16.12 %	-38.21 %	-16.86 %	-21.62 %	-17.26 %	-21.31 %	-73.04 %	-58.02 %	

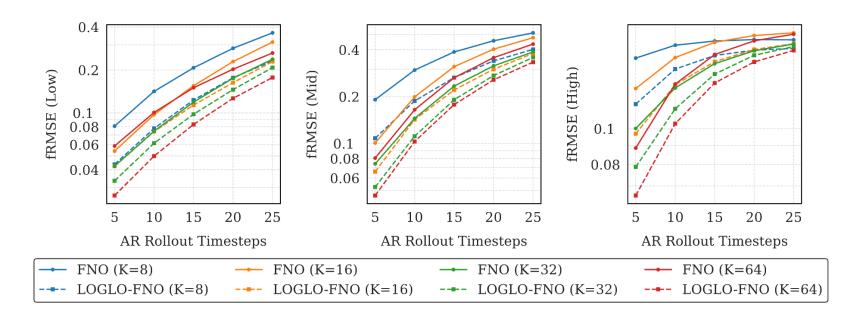
3D Turbulent Radiative Layer*


Model	RMSE (\downarrow)	nRMSE	bRMSE	cRMSE	fRMSE(L)	fRMSE(M)	fRMSE(H)	$\mathbf{vRMSE}(\downarrow)$	$\mathbf{MaxError}~(\downarrow)$	
1-step Evaluation										
U-Net	X	Х	X	Х	X	Х	Х	$3.73 \cdot 10^{-1}$	X	
CNextU-Net	X	X	X	X	X	X	X	$3.67 \cdot 10^{-1}$	X	
FNO	$2.76\cdot 10^{-1}$	$2.97\cdot 10^{-1}$	$6.83\cdot 10^{-1}$	$2.3\cdot 10^{-2}$	$5.17\cdot 10^{-2}$	$4.45 \cdot 10^{-2}$	$2.76 \cdot 10^{-2}$	$3.09 \cdot 10^{-1}$	$1.11\cdot 10^1$	
LoGLo-FNO	$2.48\cdot 10^{-1}$	$2.66\cdot 10^{-1}$	$6.3\cdot 10^{-1}$	$2.02\cdot 10^{-2}$	$4.46\cdot10^{-2}$	$3.74\cdot 10^{-2}$	$2.48\cdot 10^{-2}$	$2.77\cdot 10^{-1}$	$1.07\cdot 10^1$	
REL. % DIFF	-10.08%	-10.4%	-7.71%	-12.11%	-13.85%	-15.91%	-10.34%	-10.46%	-3.68%	

2D Diffusion-Reaction (PDEBench)*

Model	RMSE (\downarrow)	nRMSE	bRMSE	cRMSE	fRMSE (L)	fRMSE(M)	fRMSE(H)	$\mathbf{MaxError} \; (\downarrow)$	$\mathbf{MELR}\ (\downarrow)$	WLR (\downarrow)
U-Net	$6.1 \cdot 10^{-2}$	$8.4 \cdot 10^{-1}$	$7.8 \cdot 10^{-2}$	$3.9 \cdot 10^{-2}$	$1.7 \cdot 10^{-2}$	$8.2 \cdot 10^{-4}$	$5.7 \cdot 10^{-2}$	$1.9 \cdot 10^{-1}$	X	X
U-FNO	$1.4 \cdot 10^{-2}$	$2.6 \cdot 10^{-1}$	$2.0 \cdot 10^{-2}$	$4.3 \cdot 10^{-3}$	$3.4 \cdot 10^{-3}$	$1.6 \cdot 10^{-3}$	$2.6 \cdot 10^{-4}$	$7.8 \cdot 10^{-2}$	$4.5 \cdot 10^{-1}$	$7.9 \cdot 10^{-2}$
FNO	$5.2 \cdot 10^{-3}$	$8.3 \cdot 10^{-2}$	$1.5 \cdot 10^{-2}$	$1.2 \cdot 10^{-3}$	$6.2 \cdot 10^{-4}$	$5.6 \cdot 10^{-4}$	$2.4 \cdot 10^{-4}$	$7.3 \cdot 10^{-2}$	$2.96 \cdot 10^{-1}$	$1.3 \cdot 10^{-2}$
F-FNO	$4.3 \cdot 10^{-3}$	$7.0 \cdot 10^{-2}$	$7.9 \cdot 10^{-3}$	$2.8 \cdot 10^{-3}$	$9.6 \cdot 10^{-4}$	$4.7 \cdot 10^{-4}$	$1.3 \cdot 10^{-4}$	$5.3 \cdot 10^{-2}$	$2.0 \cdot 10^{-1}$	$1.3 \cdot 10^{-2}$
LSM	$2.81\cdot 10^{-2}$	$4.47 \cdot 10^{-1}$	$3.45 \cdot 10^{-2}$	$5.92\cdot10^{-3}$	$7.17\cdot 10^{-3}$	$2.4\cdot10^{-3}$	$3.67 \cdot 10^{-4}$	$1.32\cdot 10^{-1}$	$3.43 \cdot 10^{-1}$	$2.08\cdot10^{-1}$
NO-LIDK (loc. int)	$3.6 \cdot 10^{-3}$	$6.3 \cdot 10^{-2}$	$1.0 \cdot 10^{-2}$	$4.8 \cdot 10^{-4}$	$4.0 \cdot 10^{-4}$	$4.6 \cdot 10^{-4}$	$1.5 \cdot 10^{-4}$	$5.0 \cdot 10^{-2}$	X	X
LoGLo-FNO	$3.89 \cdot 10^{-3}$	$6.4 \cdot 10^{-2}$	$5.2 \cdot 10^{-3}$	$4.6 \cdot 10^{-4}$	$2.8 \cdot 10^{-4}$	$3.2 \cdot 10^{-4}$	$1.9 \cdot 10^{-4}$	$2.2 \cdot 10^{-2}$	$1.6 \cdot 10^{-1}$	$7.9 \cdot 10^{-3}$
REL. % DIFF	-25.19 %	-22.75 %	-65.13 %	-61.67 %	-54.84 %	-42.86 %	-20.83 %	-69.97 %	-44.09 %	-36.98 %

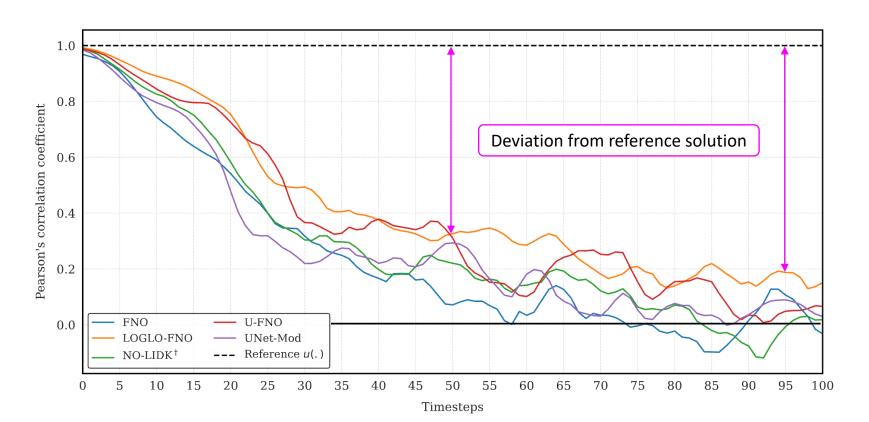
Fully autoregressive training and evaluation.


2D INS: Kolmogorov flow*

1-step Error (fRMSE):

- Global branch: varying number of modes
- Local branch : patch size (16 x 16)

2D INS: Kolmogorov flow*



Autoregressive Rollout (fRMSE):

- Global branch: varying number of modes
- Local branch : patch size (16 x 16)

Correlation with Reference Solution

(on a random trajectory from the Kolmogorov flow 2D test set)

Conclusions

- ✓ Proposed LOGLO-FNO model for modeling local features and high frequencies.
- ✓ Local spectral convolutions significantly boosts FNO accuracy.
- **√ 50% reduction** in trainable parameters to reach base FNO scores.
- ✓ Radially binned spectral loss complements the training objective.
- ✓ Rollout errors have also been improved, but not entirely mitigated.
- ✓ AR error accumulation is a fundamental problem that needs tackling.

Acknowledgements

Project Page

