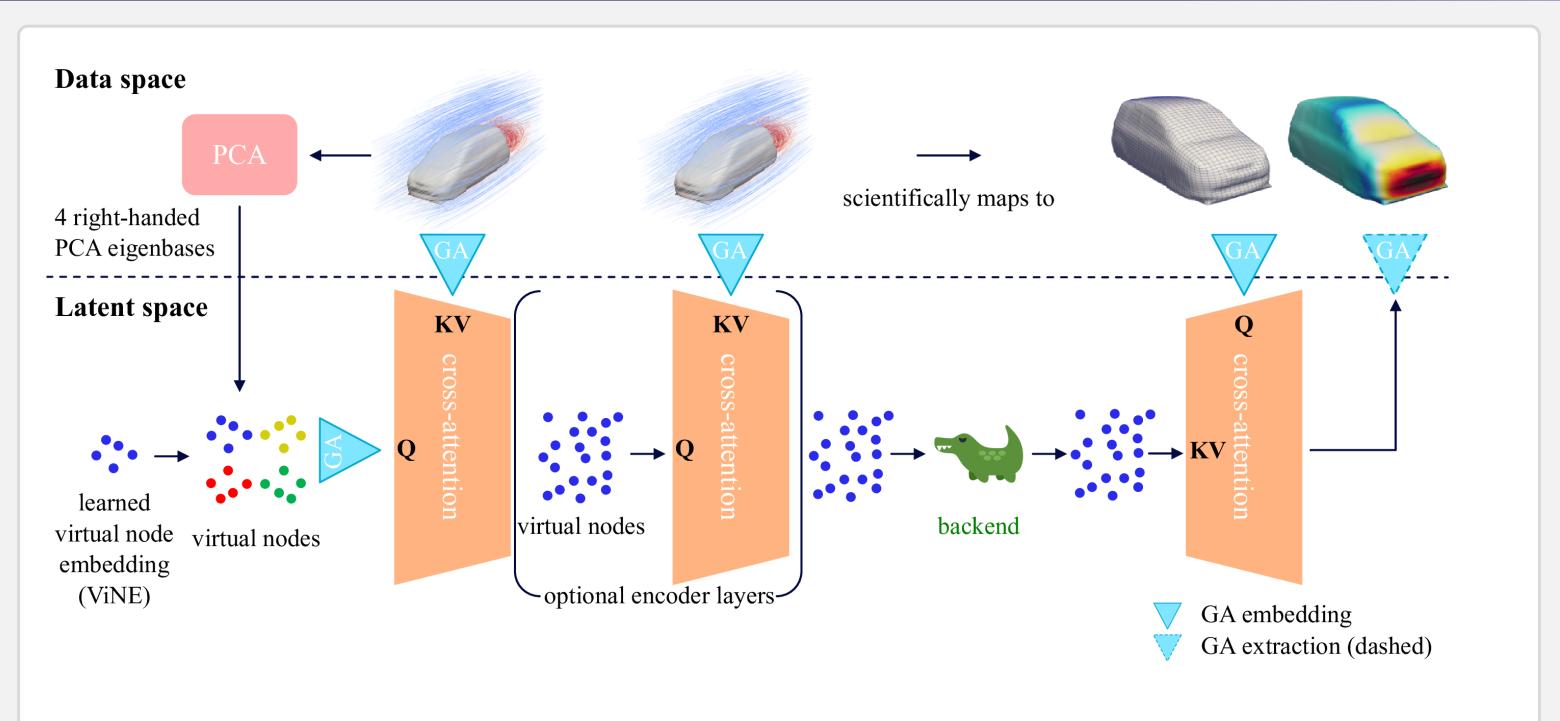


ViNE-GATr: Scaling Geometric Algebra Transformers with Virtual Nodes Embeddings

Qualco_M Al research

Julian Suk*, Thomas Hehn, Arash Behboodi, Gabriele Cesa
*Work done during the internship at Qualcomm Al Research, Amsterdam.



Geometric Algebra Transformer

•

PerceiverIO

=

Scalable equivariant transformer

efficiently processing geometric data in coarse-grained latent

Problem

Large-scale geometric data typical in many scientific disciplines but requires efficient solutions

Typically, coarsening via downsampling disrupts the symmetries

Projective Geometric Algebra and GATr

Geometric
Algebra
Transformers
(GATr) are $E(3)$
equivariant

architectures

Object / operator		Scalar Ve		Bivector		Trivector		PS
		e_0	e_i	e_{0i}	e_{ij}	e_{0ij}	e_{123}	e_{0123}
Scalar $\lambda \in \mathbb{R}$	λ	0	0	0	0	0	0	0
Plane w/ normal $n \in \mathbb{R}^3$, origin shift $d \in \mathbb{R}$	0	d	n	0	0	0	0	0
Line w/ direction $n \in \mathbb{R}^3$, orthogonal shift $s \in \mathbb{R}^3$	0	0	0	s	n	0	0	0
Point $p \in \mathbb{R}^3$	0	0	0	0	0	\boldsymbol{p}	1	0
Pseudoscalar $\mu \in \mathbb{R}$	0	0	0	0	0	0	0	μ
Reflection through plane w/ normal $n \in \mathbb{R}^3$, origin shift $d \in \mathbb{R}$	0	d	n	0	0	0	0	0
Translation $t \in \mathbb{R}^3$	1	0	0	$\frac{1}{2}t$	0	0	0	0
Rotation expressed as quaternion $q \in \mathbb{R}^4$	q_0	0	0	0	q_i	0	0	0
Point reflection through $p \in \mathbb{R}^3$	0	0	0	0	0	\boldsymbol{n}	1	0

GATr leverages *projective geometric algebra* (PGA) to represent its features as 16-dimensional *multivectors* encoding geometric objects:

$$x = (\underbrace{x_s}, \underbrace{x_0, x_1, x_2, x_3}, \underbrace{x_{01}, x_{02}, x_{03}, x_{12}, x_{13}, x_{23}}, \underbrace{x_{012}, x_{013}, x_{023}, x_{123}}, \underbrace{x_{0123}}) \in G(3, 0, 1)$$

scalar vectors bi-vectors tri-vec

Virtual Nodes Embeddings GATr

 $\forall g \in G$

PerceiverIO learns fixed query tokens which attend to input tokens

Naive adaptation can only capture invariant quantities

$$\langle \boldsymbol{q}(v_i), \boldsymbol{k}(g.n_j) \rangle = \langle \boldsymbol{q}(v_i), \rho(g)\boldsymbol{k}(n_j) \rangle \qquad \neq \langle \boldsymbol{q}(v_i), \boldsymbol{k}(n_j) \rangle \qquad \forall g \in G$$

Virtual Nodes Embeddings (ViNE):

- Augment query tokens with geometric features from input PCA
- Eigenvectors sign-ambiguity turned in permutation symmetry of right-handed frames by repeating virtual nodes 4 times
- It can learn a *canonicalized* virtual point-cloud by mixing features with GATr primitives

 $\langle \boldsymbol{q}(v_i, g.f), \boldsymbol{k}(g.n_j) \rangle = \langle \rho(g) \boldsymbol{q}(v_i, f), \rho(g) \boldsymbol{k}(n_j) \rangle = \langle \boldsymbol{q}(v_i, f), \boldsymbol{k}(n_j) \rangle$

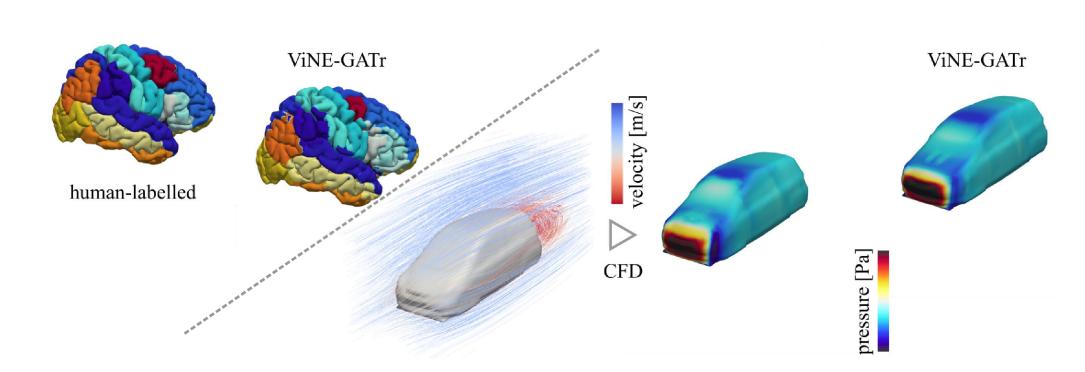
$$X \in \mathbb{R}^{3 \times N} \xrightarrow{\mathbf{PCA}} \mathbf{c} \in \mathbb{R}^3$$

$$[w_1 \mid w_2 \mid w_3] \in \mathbb{R}^{3 \times 3} \xrightarrow{\text{Resolve}} \begin{bmatrix} +w_1 \mid +w_2 \mid +w_3 \end{bmatrix}$$

$$[-w_1 \mid -w_2 \mid -w_3]$$

$$[-w_1 \mid -w_2 \mid +w_3]$$

Experiments



Large-scale cortical surface data

Compare ViNE-GATr (V=750 virtual nodes) with *furthest point sampling* (FPS) LaB-GATr and *random sampling* LaB-GATr[†] (~1K hidden tokens)

ViNE-GATr breaks eigenvector sign-flip symmetry

Model	Inference [ms] (*)	Accuracy ↑ [%]
LaB-GATr ViNE-GATr LaB-GATr [†]	2076.5 (86.2 %) 390.1 (1.8 %) 386.1 (0.0 %)	79.4 ± 1.8 77.3 ± 2.7 66.6 ± 2.2

Mindboggle-101 dataset (~300K vertices per sample)

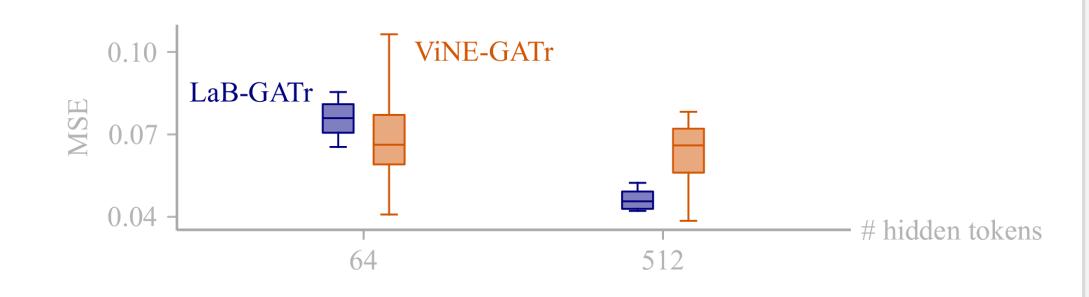
Cars' airflow data

Compare with LaB-GATr (FPS)
when varying the virtual token
budget

ViNE-GATr respects eigenvector sign-flip symmetry

Model	Error $\times 1e2 \downarrow$
CINO	2 1 4
GINO	2.14
UPT	2.24
FNO	3.26
ViNE-GATr	3.85

ShapeNet Car benchmark



Bibliography

Brehmer et al. "Geometric Algebra Transformer" in NeurIPS, 2023.

Alkin et al. "Universal physics transformers: A framework for efficiently scaling neural operators" in NeurIPS, 2024. Suk et al., "LaB-GATr: Geometric algebra transformers for large biomedical surface and volume meshes" in MICCAI 2024