Sampling through Algorithmic Diffusion in Non-Convex Perceptron Problems

Elizaveta Demyanenko, Davide Straziota, Carlo Lucibello, Carlo Baldassi

Department of Computing Sciences, Bocconi University elizaveta.demyanenko@phd.unibocconi.it

Task introduction

We analyze the problem of sampling from the solution space of simple yet non-convex neural network models by employing a denoising diffusion process known as Algorithmic Stochastic Localization [2, 3], where the score function is provided by Approximate Message Passing. We introduce a formalism based on the replica method to characterize the process in the infinite-size limit in terms of a few order parameters, and, in particular, we provide criteria for the feasibility of sampling.

1. Stochastic Localization (SL)

- Input: μ probability measure on N-dimensional unit vectors
- Output: a sample $W \sim \mu$

Stochastic Localization: maintain a tilted measure μ_t ,

$$\mu_t(d\mathbf{W}) \propto e^{\langle \mathbf{h}, \mathbf{W} \rangle} \mu(d\mathbf{W}),$$

and a field $\mathbf{h}(t)$ that follows the stochastic differential equation

$$d\mathbf{h}(t) = \mathbf{m}(t) dt + d\mathbf{B}_t$$
, $\mathbf{m}(t) = \text{mean of } \mu_t$.

 (μ_t) is localizing to μ : $\mu_t \xrightarrow[t \to \infty]{} \delta_{\mathbf{W}^*}$ almost surely, with $\mathbf{W}^* \sim \mu$.

Algorithmic Stochastic Localization:

- 1. **Discretize** the differential equation.
- 2. Compute the mean of the tilted distribution with Approximate Message Passing.

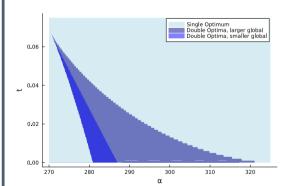
3. Negative Spherical Perceptron

The measure to sample from is:

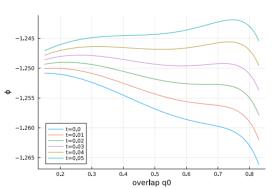
$$\mu(\mathbf{W}) \propto \prod_{\mu} \Theta\left(\sum_{i} \frac{W_{i} \xi_{i}^{\mu}}{\sqrt{N}} - \kappa\right) \delta\left(\|\mathbf{W}\|_{2} = N\right)$$
 (1)

For the asymptotic analysis we define $\mathbf{W} \sim \mu_t$ and $\mathbf{W}^* \sim \mu$, respectively samples from the tilted and objective measures. The asymptotic analysis of the sampling procedure can be studied through replica analysis (under the RS Ansatz), i.e. we construct n copies of \mathbf{W}_a and s copies of \mathbf{W}_{α}^* . We can define the following overlaps and the optimality conditions

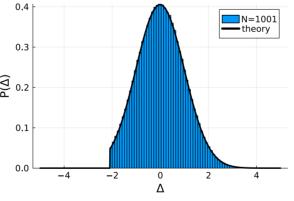
$$q_{ab} = \langle \boldsymbol{W}_a, \boldsymbol{W}_b \rangle \qquad r_{\alpha\beta} = \langle \boldsymbol{W}_{\alpha}^*, \boldsymbol{W}_{\beta}^* \rangle \qquad p_{\alpha a} = \langle \boldsymbol{W}_a, \boldsymbol{W}_{\alpha}^* \rangle$$
 (2)



Spherical perceptron phase diagram with $\kappa = -2.5$



Free entropy ϕ as a function of q_0



Stabilities Distribution for $N=1001, \; \kappa=-2.1 \text{ and } \alpha=80$

Cluster of solutions \implies Possible to sample from μ , depending on α

6. Towards the binary perceptron

The frozen nature of the binary perceptron calls for alternative measures μ that target specific types of solutions [1].

$$\mu(\mathbf{W}) \propto \prod_{\mu} \exp \left(-\beta \frac{\log \left(1 + e^{-2\gamma \left(y^{\mu} \sum_{i} \frac{W_{i} \xi_{i}^{\mu}}{\sqrt{N}} \right)} \right)}{2\gamma} \right)$$

$$(4)$$

$$\mu(\mathbf{W}) \propto \prod_{\mu} \Theta\left(y^{\mu} \sum_{i} \frac{W_{i} \xi_{i}^{\mu}}{\sqrt{N}}\right) \left(y^{\mu} \sum_{i} \frac{W_{i} \xi_{i}^{\mu}}{\sqrt{N}}\right)^{\beta}$$
 (5)

2. The perceptron models

Input: $\boldsymbol{\xi}^{\mu} \underset{\text{i.i.d.}}{\sim} \mathcal{N}(0, I_N)$

Goal: find a weight vector $\mathbf{W} \in \mathbb{R}^N$ such that

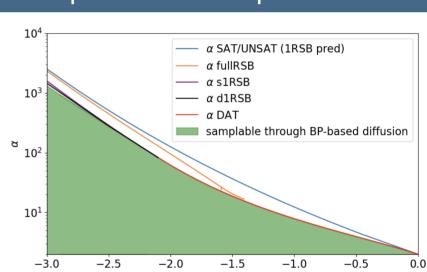
$$\mathbf{W} \cdot \boldsymbol{\xi}^{\mu} > \kappa \sqrt{N}$$
 for all $\mu = 1, \dots, M$.

 κ - the margin of the problem.

 $\alpha = M/N$ - constant in the thermodynamical limit $(N \to \infty)$.

- spherical perceptron: $\|\mathbf{W}\|^2 = N, \kappa \geq 0$.
- negative perceptron: $\|\mathbf{W}\|^2 = N, \, \kappa < 0$.
- binary perceptron: $\mathbf{W} \in \{-1,1\}^N$.

4. Spherical Perceptron Transition



Sampleable region and transitions in Negative spherical perceptron $\kappa = -2.5$

5. Binary Perceptron

The measure to sample from:

$$\mu(\mathbf{W}) \propto \prod_{\mu} \Theta\left(y^{\mu} \sum_{i} \frac{W_{i} \xi_{i}^{\mu}}{\sqrt{N}}\right)$$

 $\overline{\text{Isolated Solutions}} \implies \overline{\text{Impossible}}$

References

- [1] C. Baldassi, A. Ingrosso, C. Lucibello, L. Saglietti, and R. Zecchina. Subdominant dense clusters allow for simple learning and high computational performance in neural networks with discrete synapses. *Physical Review Letters*, 115(12), September 2015.
- [2] D. Ghio, Y. Dandi, F. Krzakala, and L. Zdeborová. Sampling with flows, diffusion and autoregressive neural networks: A spin-glass perspective, 2023.
- [3] A. Montanari. Sampling, diffusions, and stochastic localization, 2023.