# SPELL: Spatial Prompting with Chain-of-Thought for Zero-Shot Learning in Spatial Transcriptomics

Sumeer A. Khan<sup>1</sup>, Xabier M. de Morentin<sup>1</sup>, Abdel Rahman Alsabbagh<sup>1</sup>, Mahmoud Zahran<sup>1</sup>, Vincenzo Lagani<sup>1</sup>, Robert Lehmann<sup>1</sup>, Narsis A. Kiani<sup>2</sup>, David Gomez-Cabrero<sup>1,3</sup>, Jesper Tegnér<sup>1,2</sup>\*

<sup>1</sup>King Abdullah University of Science & Technology (KAUST), Saudi Arabia; <sup>2</sup>Karolinska Institute, Sweden; <sup>3</sup>Navarrabiomed, Spain; \*Corresponding author

# Introduction

#### • Zero-Shot Learning (ZSL) for Cell-Type Classification

• Limited exploration of ZSL in spatially resolved transcriptomics, particularly in integrating spatial context with marker gene semantics for accurate cell-type classification

## • Spatial Prompt-Enhanced Zero-Shot Learning

• Combining graph autoencoder (GAE)-derived spatial embeddings with chain-of-thought (CoT) prompting to create human-interpretable classification prompts for zeroshot learning

#### Overcoming Limitations of Traditional ZSL **Approaches**

• SPELL surpasses conventional ZSL methods by explicitly encoding local cellular neighborhoods via spatial k-nearest neighbor graphs and generating interpretable CoT prompts that integrate marker gene expression and spatial embedding norms

## Data

#### • MERFISH, Stereo-Seq, and MIBI-TOF Datasets for **SPELL Evaluation**

#### • MERFISH Dataset

• Comprises 12 consecutive slices from the mouse hypothalamic preoptic region, (Moffitt et al., 2018; curated in Palla et al., 2022)

#### • Stereo-seq Drosophila Dataset

• Provides a 3D high- resolution gene expression map capturing spatial and temporal dynamics during Drosophila embryonic and larval development (Qiu et al., 2024)

## MIBI-TOF Dataset

• Offers single-cell metabolic profiles, phenotypes, and spatial organization of CD8+ T cells and colorectal carcinoma, enabling analysis of cellular interactions (Hartmann et al., 2021; curated in Palla et al., 2022)

# Conclusion

## • Effective Spatial Prompting with SPELL

• SPELL integrates spatial and molecular data into CoT prompts, leveraging LLMs for zero-shot cell-type classification, achieving strong accuracy and interpretability across MERFISH, MIBI-TOF, and Stereoseq datasets

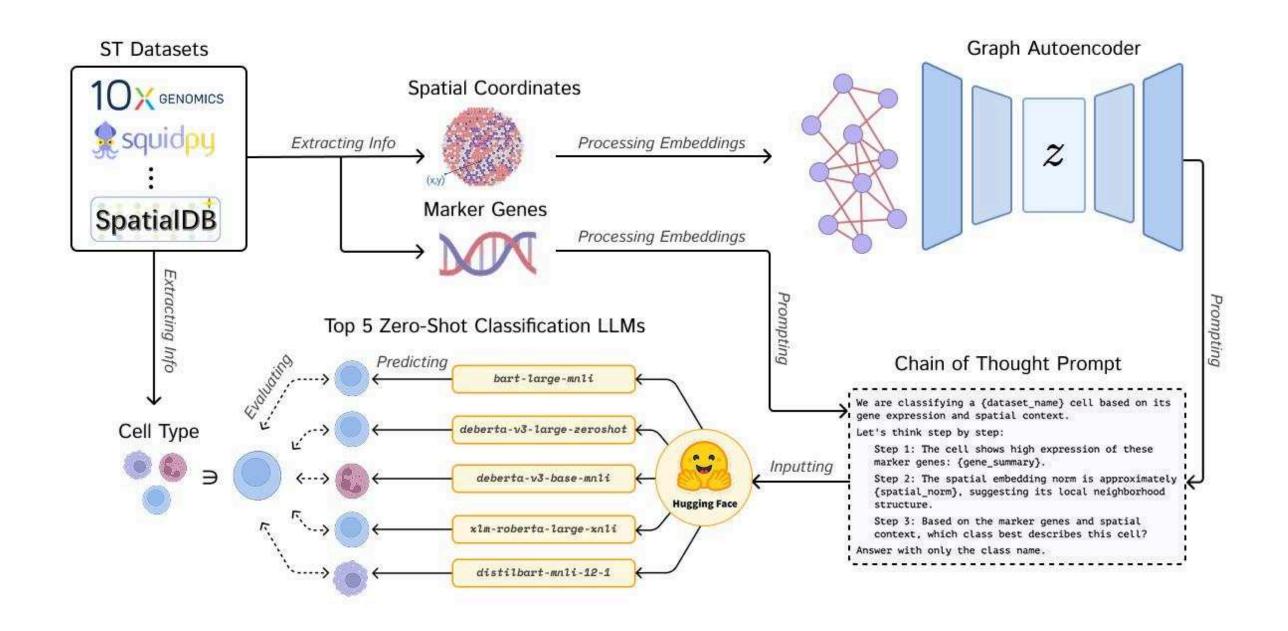
## • Future Directions

• Enhancing SPELL with additional spatial modalities, optimized marker selection, advanced spatial metrics, and validation across diverse tissues and platforms will further improve its robustness and applicability

# References

- J. R. Moffitt, et.al., Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science, 362(6416):eaau5324, 2018
- Felix J Hartmann et al. Single-cell metabolic profiling of human cytotoxic t cells. Nature biotechnology, 39(2):186– 197, 2021







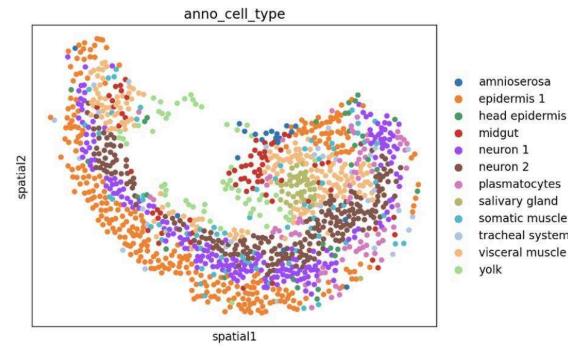

# Methods

#### • Integrated Workflow for Zero-Shot Classification in Spatial Transcriptomics

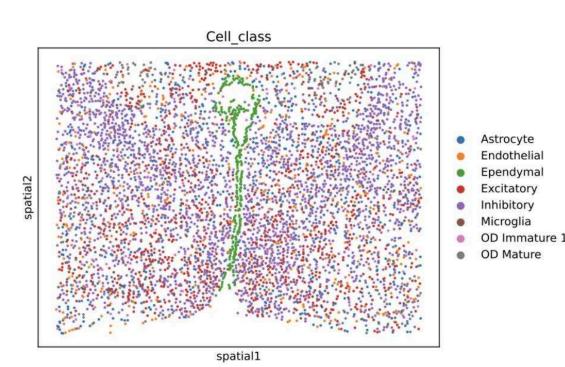
• SPELL comprises three primary components: (i) extraction of marker genes, (ii) construction and embedding of a spatial graph using a Graph AutoEncoder (GAE), and (iii) generation of chain-of-thought prompts for zero-shot classification



# Results


#### High Accuracy on MERFISH and MIBI-TOF

• The SPELL framework evaluated five models, with distilbart-mnli-12-1i and bart-large-mnli achieving top accuracies on MERFISH (64%) and MIBI-TOF (52%) datasets, leveraging marker gene data and spatial context via Chain-of-Thought (CoT) prompting


## • Challenges with Stereo-seq Drosophila

• Both BART models showed reduced performance on the Stereo-seq dataset due to platform differences and added temporal complexity, highlighting challenges in generalizing zero-shot classification to non-mammalian systems

| Model                                     | <b>MERFISH</b> |          | <b>MIBI-TOF</b> |          | Stereo-Seq |          |
|-------------------------------------------|----------------|----------|-----------------|----------|------------|----------|
|                                           | Accuracy       | F1-Score | Accuracy        | F1-Score | Accuracy   | F1-Score |
| distilbart-mnli-12-1                      | 0.640          | 0.558    | 0.390           | 0.269    | 0.210      | 0.080    |
| bart-large-mnli                           | 0.010          | 0.002    | 0.520           | 0.429    | 0.120      | 0.026    |
| deberta-v3-base-                          | 0.150          | 0.039    | 0.510           | 0.362    | 0.080      | 0.012    |
| mnli-fever-anli-ling-<br>wanli-binary     |                |          |                 |          |            |          |
| deberta-v3-large-<br>zeroshot-v1.1-all-33 | 0.040          | 0.003    | 0.350           | 0.253    | 0.020      | 0.001    |
| xlm-roberta-large-<br>xnli                | 0.160          | 0.075    | 0.030           | 0.013    | 0.070      | 0.009    |



Drosophila Stereo-seg Slice



**MERFISH Slice** 

## Ablation Study

## Spatial Context Removal

• Omitting spatial embedding norm from CoT prompt, using only marker gene summary, caused performance drops across models

## MERFISH Performance Decline

• Distilbart-mili-12-1i accuracy fell to 49% (F1-score: 0.338) and bart-large-mnli to 4% (F1-score: 0.003), compared to 64% and 52% with full model

| Model Identifier                                  | Accuracy | F1-Score |
|---------------------------------------------------|----------|----------|
| distilbart-mnli-12-1                              | 0.490    | 0.338    |
| xlm-roberta-large-xnli                            | 0.150    | 0.039    |
| deberta-v3-large-zeroshot-v1.1-all                | 0.020    | 0.003    |
| deberta-v3-base-mnli-fever-anli-ling-wanli-binary | 0.130    | 0.037    |
| Bart-large-mnli                                   | 0.040    | 0.003    |