SINDy Surrogates in RL

Dixit et a

Methodology Results

Learning from Less: SINDy Surrogates in RL

Aniket Dixit¹ Muhammad Ibrahim Khan² Faizan Ahmed³ James Brusey⁴

¹Coventry University, United Kingdom

ICLR 2025

Outline

SINDy Surrogates in RL

Dixit et a

Introduction

Methodolog

Regulte

- 1 Introduction
- 2 Methodology
- 3 Results
- 4 Conclusion

Motivation

SINDy Surrogates in RL

Dixit et

Introduction

Methodology

Results

Conclusio

- Reinforcement Learning (RL) requires extensive environmental interactions
- Challenges:
 - High computational costs
 - Safety concerns in real-world applications
 - Limited sample efficiency
- Our approach: Develop efficient surrogate environments using SINDy
- SINDy = Sparse Identification of Nonlinear Dynamics

Contributions

SINDy Surrogates in RL

Dixit et

Introduction

Methodology

Results

Conclusio

- Novel framework for creating SINDy-based surrogate environments
- 2 Significant data reduction while maintaining high fidelity
- 3 Demonstrated effectiveness on OpenAl Gym environments
 - Mountain Car
 - Lunar Lander
- 4 20-35% reduction in computational costs

Data Collection

SINDy Surrogates in RL

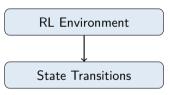
Dixit et a

Introduction

Methodology

Results

- Used pre-trained RL models to collect state transitions
- Mountain Car: 75 transitions (SAC agent)
- Lunar Lander: 1000 transitions (PPO agent)
- ϵ -greedy policy (ϵ = 0.2) for exploration/exploitation balance
- Recorded (s_t, a_t, s_{t+1}) tuples



SINDy Model Development

SINDy Surrogates in RL

Dixit et al

Introduction

Methodology

Results

Conclusio

Four-stage process:

- Initial Model Construction
 - Fitted basic models using Sequential Thresholded Least Squares (STLSQ)
- Residual Analysis
 - Added nonlinear terms based on prediction errors
 - Trigonometric terms for Mountain Car
 - Polynomial terms for Lunar Lander
- **3** Parameter Optimization
 - Grid search across threshold and regularization values
- Cross-Validation
 - Final selection based on minimal MSE

SINDy-Driven Surrogate Environment

SINDy Surrogates in RL

Dixit et a

min oddenoi

Methodology

.....

 Original physics engine replaced by SINDy model

- Preserves key characteristics of original implementations
- State transition function:

$$s_{t+1} = f_{SINDy}(s_t, a_t) \tag{1}$$

Algorithm 1 SD-RL Algorithm

```
// Data Collection
for i = 1 to N do
  Initialize environment
  for t = 1 to max timesteps do
     Select action a_t using \epsilon-greedy
     Execute a_t, observe s_{t+1}, r_t
     Store (s_t, a_t, s_{t+1}, r_t) in D
  end for
end for
// Train SINDy Model
Train SIND\nu model using D
// Train RL Agent in Surrogate
Train RL agent using surrogate
```

SINDy Model Performance

SINDy Surrogates in RL

Dixit et a

Introduction

Methodology

Results

Conclusion

Environment/Component	MSE	Correlation
Mountain Car Position Velocity	$7.21\times 10^{-4}\\3.11\times 10^{-6}$	0.999 0.997
Lunar Lander x/y-position x/y-velocity angle/angular vel.	$1.42 \times 10^{-6} / 9.64 \times 10^{-6}$ $1.58 \times 10^{-5} / 3.38 \times 10^{-5}$ $1.03 \times 10^{-5} / 1.24 \times 10^{-4}$	1.000/1.000 1.000/0.999 0.999/0.989

Library Function Impact

SINDy Surrogates in RL

Dixit et a

Methodolog

Results

Conclusion

Library Function	MC MSE	LL MSE
Polynomials only With trigonometric With rational terms	5.32×10^{-3} 3.11×10^{-6} 4.15×10^{-4}	1.58×10^{-4} 1.62×10^{-4} 1.87×10^{-4}

- Trigonometric functions crucial for Mountain Car
- Polynomial terms sufficient for Lunar Lander
- Adding rational terms did not improve performance

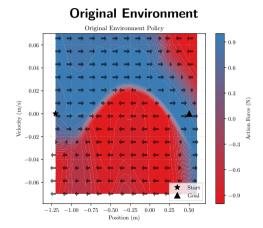
Policy Learning Results - Mountain Car

SINDy Surrogates in RL

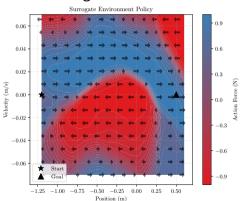
Dixit et al

Methodolog

Results



Surrogate Environment



Policy Learning Results - Mountain Car (Key Findings)

SINDy Surrogates in RL

Dixit et

minoduction

Methodolog

Results

Conclusio

Key Findings:

- Identical momentum building in valley regions (blue)
- Similar oscillatory behavior in middle regions
- Consistent stabilization near goal (red)

Policy Learning Results - Lunar Lander

SINDy Surrogates in RL

Dixit et a

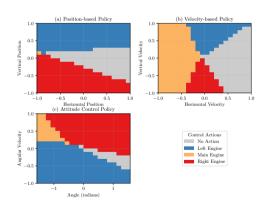
Introduction

Methodology

Results

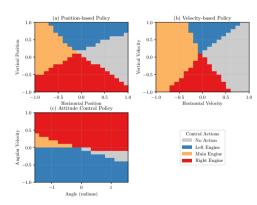
Original Environment

Original Environment Policy



Surrogate Environment

Surrogate Environment Policy



Policy Learning Results - Lunar Lander (Key Findings)

SINDy Surrogates in RL

Dixit et a

miroduction

Methodolog

Results

Conclusio

Key Findings:

- Similar engine activation patterns across dimensions
- Slight tactical differences in descent control
- No compromise to landing performance

Computational Efficiency

SINDy Surrogates in RL

Dixit et

. .

Methodolog

Results

Conclusion

Environment	Original	SINDy	Reduction
Mountain Car	100,000	65,075	35%
Lunar Lander	1,000,000	801,000	20%

Table: Training steps comparison

- Minimal data collection requirements
 - 75 state transitions (Mountain Car)
 - 1,000 state transitions (Lunar Lander)
- Superior accuracy vs. neural networks
 - 95% less computational resources
 - Better MSE: 3.11×10^{-6} vs. 4.45×10^{-6}

Conclusion & Future Work

SINDy Surrogates in RI

Dixit et al.

Introduction

Methodolog

Conclusion

Key Results

- Exceptional fidelity (correlations > 0.99) with minimal data
- Critical importance of appropriate library functions
- Near-identical policies confirm preservation of essential dynamics
- 20-35% computational efficiency gains with interpretability advantages

Future Directions

- Scale to higher-dimensional state spaces
- Test generalization capability to different initial conditions
- Develop hybrid approaches combining SINDy with other techniques
- Validate on physical systems for real-world applications

SINDy Surrogates in Rl

District of all

Introduction

Methodology

Results

Conclusion

Thank you!

Questions?

Contact: dixita4@uni.coventry.ac.uk