Topic Keywords

[ $\ell_1$ norm ] [ $f-$divergence ] [ 3D Convolution ] [ 3D deep learning ] [ 3D generation ] [ 3d point cloud ] [ 3D Reconstruction ] [ 3D scene understanding ] [ 3D shape representations ] [ 3D shapes learning ] [ 3D vision ] [ 3D Vision ] [ abstract reasoning ] [ abstract rules ] [ Acceleration ] [ accuracy ] [ acoustic condition modeling ] [ Action localization ] [ action recognition ] [ activation maximization ] [ activation strategy. ] [ Active learning ] [ Active Learning ] [ AdaBoost ] [ adaptive heavy-ball methods ] [ Adaptive Learning ] [ adaptive methods ] [ adaptive optimization ] [ ADMM ] [ Adversarial Accuracy ] [ Adversarial Attack ] [ Adversarial Attacks ] [ adversarial attacks/defenses ] [ Adversarial computer programs ] [ Adversarial Defense ] [ Adversarial Example Detection ] [ Adversarial Examples ] [ Adversarial Learning ] [ Adversarial Machine Learning ] [ adversarial patch ] [ Adversarial robustness ] [ Adversarial Robustness ] [ Adversarial training ] [ Adversarial Training ] [ Adversarial Transferability ] [ aesthetic assessment ] [ affine parameters ] [ age estimation ] [ Aggregation Methods ] [ AI for earth science ] [ ALFRED ] [ Algorithm ] [ algorithmic fairness ] [ Algorithmic fairness ] [ Algorithms ] [ alignment ] [ alignment of semantic and visual space ] [ amortized inference ] [ Analogies ] [ annotation artifacts ] [ anomaly-detection ] [ Anomaly detection with deep neural networks ] [ anonymous walk ] [ appearance transfer ] [ approximate constrained optimization ] [ approximation ] [ Approximation ] [ Architectures ] [ argoverse ] [ Artificial Integlligence ] [ ASR ] [ assistive technology ] [ associative memory ] [ Associative Memory ] [ asynchronous parallel algorithm ] [ Atari ] [ Attention ] [ Attention Mechanism ] [ Attention Modules ] [ attractors ] [ attributed walks ] [ Auction Theory ] [ audio understanding ] [ Audio-Visual ] [ audio visual learning ] [ audio-visual representation ] [ audio-visual representation learning ] [ Audio-visual sound separation ] [ audiovisual synthesis ] [ augmented deep reinforcement learning ] [ autodiff ] [ Autoencoders ] [ automated data augmentation ] [ automated machine learning ] [ automatic differentiation ] [ AutoML ] [ autonomous learning ] [ autoregressive language model ] [ Autoregressive Models ] [ AutoRL ] [ auxiliary information ] [ auxiliary latent variable ] [ Auxiliary Learning ] [ auxiliary task ] [ Average-case Analysis ] [ aversarial examples ] [ avoid knowledge leaking ] [ backdoor attack ] [ Backdoor Attacks ] [ Backdoor Defense ] [ Backgrounds ] [ backprop ] [ back translation ] [ backward error analysis ] [ bagging ] [ batchnorm ] [ Batch Normalization ] [ batch reinforcement learning ] [ Batch Reinforcement Learning ] [ batch selection ] [ Bayesian ] [ Bayesian classification ] [ Bayesian inference ] [ Bayesian Inference ] [ Bayesian networks ] [ Bayesian Neural Networks ] [ behavior cloning ] [ belief-propagation ] [ Benchmark ] [ benchmarks ] [ benign overfitting ] [ bert ] [ BERT ] [ beta-VAE ] [ better generalization ] [ biased sampling ] [ biases ] [ Bias in Language Models ] [ bidirectional ] [ bilevel optimization ] [ Bilinear games ] [ Binary Embeddings ] [ Binary Neural Networks ] [ binaural audio ] [ binaural speech ] [ biologically plausible ] [ Biometrics ] [ bisimulation ] [ Bisimulation ] [ bisimulation metrics ] [ bit-flip ] [ bit-level sparsity ] [ blind denoising ] [ blind spots ] [ block mdp ] [ boosting ] [ bottleneck ] [ bptt ] [ branch and bound ] [ Brownian motion ] [ Budget-Aware Pruning ] [ Budget constraints ] [ Byzantine resilience ] [ Byzantine SGD ] [ CAD modeling ] [ calibration ] [ Calibration ] [ calibration measure ] [ cancer research ] [ Capsule Networks ] [ Catastrophic forgetting ] [ Catastrophic Forgetting ] [ Causal Inference ] [ Causality ] [ Causal network ] [ certificate ] [ certified defense ] [ Certified Robustness ] [ challenge sets ] [ change of measure ] [ change point detection ] [ channel suppressing ] [ Channel Tensorization ] [ Channel-Wise Approximated Activation ] [ Chaos ] [ chebyshev polynomial ] [ checkpointing ] [ Checkpointing ] [ chemistry ] [ CIFAR ] [ Classification ] [ class imbalance ] [ clean-label ] [ Clustering ] [ Clusters ] [ CNN ] [ CNNs ] [ Code Compilation ] [ Code Representations ] [ Code Structure ] [ code summarization ] [ Code Summarization ] [ Cognitively-inspired Learning ] [ cold posteriors ] [ collaborative learning ] [ Combinatorial optimization ] [ common object counting ] [ commonsense question answering ] [ Commonsense Reasoning ] [ Communication Compression ] [ co-modulation ] [ complete verifiers ] [ complex query answering ] [ Composition ] [ compositional generalization ] [ compositional learning ] [ compositional task ] [ Compressed videos ] [ Compressing Deep Networks ] [ Compression ] [ computation ] [ computational biology ] [ Computational Biology ] [ computational complexity ] [ Computational imaging ] [ Computational neuroscience ] [ Computational resources ] [ computer graphics ] [ Computer Vision ] [ concentration ] [ Concentration of Measure ] [ Concept-based Explanation ] [ concept drift ] [ Concept Learning ] [ conditional expectation ] [ Conditional GANs ] [ Conditional Generation ] [ Conditional generative adversarial networks ] [ conditional layer normalization ] [ Conditional Neural Processes ] [ Conditional Risk Minimization ] [ Conditional Sampling ] [ conditional text generation ] [ Conferrability ] [ confidentiality ] [ conformal inference ] [ conformal prediction ] [ conjugacy ] [ conservation law ] [ consistency ] [ consistency training ] [ Consistency Training ] [ constellation models ] [ constrained beam search ] [ Constrained optimization ] [ constrained RL ] [ constraints ] [ constraint satisfaction ] [ contact tracing ] [ Contextual Bandits ] [ Contextual embedding space ] [ Continual learning ] [ Continual Learning ] [ continuation method ] [ continuous and scalar conditions ] [ continuous case ] [ Continuous Control ] [ continuous convolution ] [ continuous games ] [ continuous normalizing flow ] [ continuous time ] [ Continuous-time System ] [ continuous treatment effect ] [ contrastive divergence ] [ Contrastive learning ] [ Contrastive Learning ] [ Contrastive Methods ] [ contrastive representation learning ] [ control barrier function ] [ controlled generation ] [ Controlled NLG ] [ Convergence ] [ Convergence Analysis ] [ convex duality ] [ Convex optimization ] [ ConvNets ] [ convolutional kernel methods ] [ Convolutional Layer ] [ convolutional models ] [ Convolutional Networks ] [ copositive programming ] [ corruptions ] [ COST ] [ Counterfactual inference ] [ counterfactuals ] [ Counterfactuals ] [ covariant neural networks ] [ covid-19 ] [ COVID-19 ] [ Cross-domain ] [ cross-domain few-shot learning ] [ cross-domain video generation ] [ cross-episode attention ] [ cross-fitting ] [ cross-lingual pretraining ] [ Cryptographic inference ] [ cultural transmission ] [ Curriculum Learning ] [ curse of memory ] [ curvature estimates ] [ custom voice ] [ cycle-consistency regularization ] [ cycle-consistency regularizer ] [ DAG ] [ DARTS stability ] [ Data augmentation ] [ Data Augmentation ] [ data cleansing ] [ Data-driven modeling ] [ data-efficient learning ] [ data-efficient RL ] [ Data Flow ] [ data labeling ] [ data parallelism ] [ Data Poisoning ] [ Data Protection ] [ Dataset ] [ dataset bias ] [ dataset compression ] [ dataset condensation ] [ dataset corruption ] [ dataset distillation ] [ dataset summarization ] [ data structures ] [ debiased training ] [ debugging ] [ Decentralized Optimization ] [ decision boundary geometry ] [ decision trees ] [ declarative knowledge ] [ deep-anomaly-detection ] [ Deep Architectures ] [ Deep denoising priors ] [ deep embedding ] [ Deep Ensembles ] [ deep equilibrium models ] [ Deep Equilibrium Models ] [ Deepfake ] [ deep FBSDEs ] [ Deep Gaussian Processes ] [ Deep generative model ] [ Deep generative modeling ] [ Deep generative models ] [ deeplearning ] [ Deep learning ] [ Deep Learning ] [ deep learning dynamics ] [ Deep Learning Theory ] [ deep network training ] [ deep neural network ] [ deep neural networks. ] [ Deep Neural Networks ] [ deep one-class classification ] [ deep Q-learning ] [ Deep reinforcement learning ] [ Deep Reinforcement Learning ] [ deep ReLU networks ] [ Deep residual neural networks ] [ deep RL ] [ deep sequence model ] [ deepset ] [ Deep Sets ] [ Deformation Modeling ] [ delay ] [ Delay differential equations ] [ denoising score matching ] [ Dense Retrieval ] [ Density estimation ] [ Density Estimation ] [ Density ratio estimation ] [ dependency based method ] [ deployment-efficiency ] [ depression ] [ depth separation ] [ descent ] [ description length ] [ determinantal point processes ] [ Device Placement ] [ dialogue state tracking ] [ differentiable optimization ] [ Differentiable physics ] [ Differentiable Physics ] [ Differentiable program generator ] [ differentiable programming ] [ Differentiable rendering ] [ Differentiable simulation ] [ differential dynamica programming ] [ differential equations ] [ Differential Geometry ] [ differentially private deep learning ] [ Differential Privacy ] [ diffusion probabilistic models ] [ diffusion process ] [ dimension ] [ Directed Acyclic Graphs ] [ Dirichlet form ] [ Discrete Optimization ] [ discretization error ] [ disentangled representation learning ] [ Disentangled representation learning ] [ Disentanglement ] [ distance ] [ Distillation ] [ distinct elements ] [ Distributed ] [ distributed deep learning ] [ distributed inference ] [ Distributed learning ] [ distributed machine learning ] [ Distributed ML ] [ Distributed Optimization ] [ distributional robust optimization ] [ distribution estimation ] [ distribution shift ] [ diverse strategies ] [ diverse video generation ] [ Diversity denoising ] [ Diversity Regularization ] [ DNN ] [ DNN compression ] [ document analysis ] [ document classification ] [ document retrieval ] [ domain adaptation theory ] [ Domain Adaption ] [ Domain Generalization ] [ domain randomization ] [ Domain Translation ] [ double descent ] [ Double Descent ] [ doubly robustness ] [ Doubly-weighted Laplace operator ] [ Dropout ] [ drug discovery ] [ Drug discovery ] [ dst ] [ Dual-mode ASR ] [ Dueling structure ] [ Dynamical Systems ] [ dynamic computation graphs ] [ dynamics ] [ dynamics prediction ] [ dynamic systems ] [ Early classification ] [ Early pruning ] [ early stopping ] [ EBM ] [ Edit ] [ EEG ] [ effective learning rate ] [ Efficiency ] [ Efficient Attention Mechanism ] [ efficient deep learning ] [ Efficient Deep Learning ] [ Efficient Deep Learning Inference ] [ Efficient ensembles ] [ efficient inference ] [ efficient inference methods ] [ Efficient Inference Methods ] [ EfficientNets ] [ efficient network ] [ Efficient Networks ] [ Efficient training ] [ Efficient Training ] [ efficient training and inference. ] [ egocentric ] [ eigendecomposition ] [ Eigenspectrum ] [ ELBO ] [ electroencephalography ] [ EM ] [ Embedding Models ] [ Embedding Size ] [ Embodied Agents ] [ embodied vision ] [ emergent behavior ] [ empirical analysis ] [ Empirical Game Theory ] [ empirical investigation ] [ Empirical Investigation ] [ empirical study ] [ empowerment ] [ Encoder layer fusion ] [ end-to-end entity linking ] [ End-to-End Object Detection ] [ Energy ] [ Energy-Based GANs ] [ energy based model ] [ energy-based model ] [ Energy-based model ] [ energy based models ] [ Energy-based Models ] [ Energy Based Models ] [ Energy-Based Models ] [ Energy Score ] [ ensemble ] [ Ensemble ] [ ensemble learning ] [ ensembles ] [ Ensembles ] [ entity disambiguation ] [ entity linking ] [ entity retrieval ] [ entropic algorithms ] [ Entropy Maximization ] [ Entropy Model ] [ entropy regularization ] [ epidemiology ] [ episode-level pretext task ] [ episodic training ] [ equilibrium ] [ equivariant ] [ equivariant neural network ] [ ERP ] [ Evaluation ] [ evaluation of interpretability ] [ Event localization ] [ evolution ] [ Evolutionary algorithm ] [ Evolutionary Algorithm ] [ Evolutionary Algorithms ] [ Excess risk ] [ experience replay buffer ] [ experimental evaluation ] [ Expert Models ] [ Explainability ] [ explainable ] [ Explainable AI ] [ Explainable Model ] [ explaining decision-making ] [ explanation method ] [ explanations ] [ Explanations ] [ Exploration ] [ Exponential Families ] [ exponential tilting ] [ exposition ] [ external memory ] [ Extrapolation ] [ extremal sector ] [ facial recognition ] [ factor analysis ] [ factored MDP ] [ Factored MDP ] [ fairness ] [ Fairness ] [ faithfulness ] [ fast DNN inference ] [ fast learning rate ] [ fast-mapping ] [ fast weights ] [ FAVOR ] [ Feature Attribution ] [ feature propagation ] [ features ] [ feature visualization ] [ Feature Visualization ] [ Federated learning ] [ Federated Learning ] [ Few Shot ] [ few-shot concept learning ] [ few-shot domain generalization ] [ Few-shot learning ] [ Few Shot Learning ] [ fine-tuning ] [ finetuning ] [ Fine-tuning ] [ Finetuning ] [ fine-tuning stability ] [ Fingerprinting ] [ First-order Methods ] [ first-order optimization ] [ fisher ratio ] [ flat minima ] [ Flexibility ] [ flow graphs ] [ Fluid Dynamics ] [ Follow-the-Regularized-Leader ] [ Formal Verification ] [ forward mode ] [ Fourier Features ] [ Fourier transform ] [ framework ] [ Frobenius norm ] [ from-scratch ] [ frontend ] [ fruit fly ] [ fully-connected ] [ Fully-Connected Networks ] [ future frame generation ] [ future link prediction ] [ fuzzy tiling activation function ] [ Game Decomposition ] [ Game Theory ] [ GAN ] [ GAN compression ] [ GANs ] [ Garbled Circuits ] [ Gaussian Copula ] [ Gaussian Graphical Model ] [ Gaussian Isoperimetric Inequality ] [ Gaussian mixture model ] [ Gaussian process ] [ Gaussian Process ] [ Gaussian Processes ] [ gaussian process priors ] [ GBDT ] [ generalisation ] [ Generalization ] [ Generalization Bounds ] [ generalization error ] [ Generalization Measure ] [ Generalization of Reinforcement Learning ] [ generalized ] [ generalized Girsanov theorem ] [ Generalized PageRank ] [ Generalized zero-shot learning ] [ Generation ] [ Generative Adversarial Network ] [ Generative Adversarial Networks ] [ generative art ] [ Generative Flow ] [ Generative Model ] [ Generative modeling ] [ Generative Modeling ] [ generative modelling ] [ Generative Modelling ] [ Generative models ] [ Generative Models ] [ genetic programming ] [ Geodesic-Aware FC Layer ] [ geometric ] [ Geometric Deep Learning ] [ G-invariance regularization ] [ global ] [ global optima ] [ Global Reference ] [ glue ] [ GNN ] [ GNNs ] [ goal-conditioned reinforcement learning ] [ goal-conditioned RL ] [ goal reaching ] [ gradient ] [ gradient alignment ] [ Gradient Alignment ] [ gradient boosted decision trees ] [ gradient boosting ] [ gradient decomposition ] [ Gradient Descent ] [ gradient descent-ascent ] [ gradient flow ] [ Gradient flow ] [ gradient flows ] [ gradient redundancy ] [ Gradient stability ] [ Grammatical error correction ] [ Granger causality ] [ Graph ] [ graph classification ] [ graph coarsening ] [ Graph Convolutional Network ] [ Graph Convolutional Neural Networks ] [ graph edit distance ] [ Graph Generation ] [ Graph Generative Model ] [ graph-level prediction ] [ graph networks ] [ Graph neural network ] [ Graph Neural Network ] [ Graph neural networks ] [ Graph Neural Networks ] [ Graph pooling ] [ graph representation learning ] [ Graph representation learning ] [ Graph Representation Learning ] [ graph shift operators ] [ graph-structured data ] [ graph structure learning ] [ Greedy Learning ] [ grid cells ] [ grounding ] [ group disparities ] [ group equivariance ] [ Group Equivariance ] [ Group Equivariant Convolution ] [ group equivariant self-attention ] [ group equivariant transformers ] [ group sparsity ] [ Group-supervised learning ] [ gumbel-softmax ] [ Hamiltonian systems ] [ hard-label attack ] [ hard negative mining ] [ hard negative sampling ] [ Hardware-Aware Neural Architecture Search ] [ Harmonic Analysis ] [ harmonic distortion analysis ] [ healthcare ] [ Healthcare ] [ heap allocation ] [ Hessian matrix ] [ Heterogeneity ] [ Heterogeneous ] [ heterogeneous data ] [ Heterogeneous data ] [ Heterophily ] [ heteroscedasticity ] [ heuristic search ] [ hidden-parameter mdp ] [ hierarchical contrastive learning ] [ Hierarchical Imitation Learning ] [ Hierarchical Multi-Agent Learning ] [ Hierarchical Networks ] [ Hierarchical Reinforcement Learning ] [ Hierarchy-Aware Classification ] [ high-dimensional asymptotics ] [ high-dimensional statistic ] [ high-resolution video generation ] [ hindsight relabeling ] [ histogram binning ] [ historical color image classification ] [ HMC ] [ homomorphic encryption ] [ Homophily ] [ Hopfield layer ] [ Hopfield networks ] [ Hopfield Networks ] [ human-AI collaboration ] [ human cognition ] [ human-computer interaction ] [ human preferences ] [ human psychophysics ] [ humans in the loop ] [ hybrid systems ] [ Hyperbolic ] [ hyperbolic deep learning ] [ Hyperbolic Geometry ] [ hypercomplex representation learning ] [ hypergradients ] [ Hypernetworks ] [ hyperparameter ] [ Hyperparameter Optimization ] [ Hyper-Parameter Optimization ] [ HYPERPARAMETER OPTIMIZATION ] [ Image Classification ] [ image completion ] [ Image compression ] [ Image Editing ] [ Image Generation ] [ Image manipulation ] [ Image Modeling ] [ ImageNet ] [ image reconstruction ] [ Image segmentation ] [ Image Synthesis ] [ image-to-action learning ] [ Image-to-Image Translation ] [ image translation ] [ image warping ] [ imbalanced learning ] [ Imitation Learning ] [ Impartial Learning ] [ implicit bias ] [ Implicit Bias ] [ Implicit Deep Learning ] [ implicit differentiation ] [ implicit functions ] [ implicit neural representations ] [ Implicit Neural Representations ] [ Implicit Representation ] [ Importance Weighting ] [ impossibility ] [ incoherence ] [ Incompatible Environments ] [ Incremental Tree Transformations ] [ independent component analysis ] [ indirection ] [ Individual mediation effects ] [ Inductive Bias ] [ inductive biases ] [ inductive representation learning ] [ infinitely wide neural network ] [ Infinite-Width Limit ] [ infinite-width networks ] [ influence functions ] [ Influence Functions ] [ Information bottleneck ] [ Information Bottleneck ] [ Information Geometry ] [ information-theoretical probing ] [ Information theory ] [ Information Theory ] [ Initialization ] [ input-adaptive multi-exit neural networks ] [ input convex neural networks ] [ input-convex neural networks ] [ InstaHide ] [ Instance adaptation ] [ instance-based label noise ] [ Instance learning ] [ Instance-wise Learning ] [ Instrumental Variable Regression ] [ integral probability metric ] [ intention ] [ interaction networks ] [ Interactions ] [ interactive fiction ] [ Internet of Things ] [ Interpolation Peak ] [ Interpretability ] [ interpretable latent representation ] [ Interpretable Machine Learning ] [ interpretable policy learning ] [ in-the-wild data ] [ Intrinsically Motivated Reinforcement Learning ] [ Intrinsic Motivation ] [ intrinsic motivations ] [ Intrinsic Reward ] [ Invariance and Equivariance ] [ invariance penalty ] [ invariances ] [ Invariant and equivariant deep networks ] [ Invariant Representations ] [ invariant risk minimization ] [ Invariant subspaces ] [ inverse graphics ] [ Inverse reinforcement learning ] [ Inverse Reinforcement Learning ] [ Inverted Index ] [ irl ] [ IRM ] [ irregularly spaced time series ] [ irregular-observed data modelling ] [ isometric ] [ Isotropy ] [ iterated learning ] [ iterative training ] [ JEM ] [ Johnson-Lindenstrauss Transforms ] [ kernel ] [ Kernel Learning ] [ kernel method ] [ kernel-ridge regression ] [ kernels ] [ keypoint localization ] [ Knowledge distillation ] [ Knowledge Distillation ] [ Knowledge factorization ] [ Knowledge Graph Reasoning ] [ knowledge uncertainty ] [ Kullback-Leibler divergence ] [ Kurdyka-Łojasiewicz geometry ] [ label noise robustness ] [ Label Representation ] [ Label shift ] [ label smoothing ] [ Langevin dynamics ] [ Langevin sampling ] [ Language Grounding ] [ Language Model ] [ Language modeling ] [ Language Modeling ] [ Language Modelling ] [ Language Model Pre-training ] [ language processing ] [ language-specific modeling ] [ Laplace kernel ] [ Large-scale ] [ Large-scale Deep Learning ] [ large scale learning ] [ Large-scale Machine Learning ] [ large-scale pre-trained language models ] [ large-scale training ] [ large vocabularies ] [ Last-iterate Convergence ] [ Latency-aware Neural Architecture Search ] [ Latent Simplex ] [ latent space of GANs ] [ Latent Variable Models ] [ lattices ] [ Layer order ] [ layerwise sparsity ] [ learnable ] [ learned algorithms ] [ Learned compression ] [ learned ISTA ] [ Learning ] [ learning action representations ] [ learning-based ] [ learning dynamics ] [ Learning Dynamics ] [ Learning in Games ] [ learning mechanisms ] [ Learning physical laws ] [ Learning Theory ] [ Learning to Hash ] [ learning to optimize ] [ Learning to Optimize ] [ learning to rank ] [ Learning to Rank ] [ learning to teach ] [ learning with noisy labels ] [ Learning with noisy labels ] [ library ] [ lifelong ] [ Lifelong learning ] [ Lifelong Learning ] [ lifted inference ] [ likelihood-based models ] [ likelihood-free inference ] [ limitations ] [ limited data ] [ linear bandits ] [ Linear Convergence ] [ linear estimator ] [ Linear Regression ] [ linear terms ] [ linformer ] [ Lipschitz constants ] [ Lipschitz constrained networks ] [ Local Explanations ] [ locality sensitive hashing ] [ Locally supervised training ] [ local Rademacher complexity ] [ log-concavity ] [ Logic ] [ Logic Rules ] [ logsignature ] [ Long-Tailed Recognition ] [ long-tail learning ] [ Long-term dependencies ] [ long-term prediction ] [ long-term stability ] [ loss correction ] [ Loss function search ] [ Loss Function Search ] [ lossless source compression ] [ Lottery Ticket ] [ Lottery Ticket Hypothesis ] [ lottery tickets ] [ low-dimensional structure ] [ lower bound ] [ lower bounds ] [ Low-latency ASR ] [ low precision training ] [ low rank ] [ low-rank approximation ] [ low-rank tensors ] [ L-smoothness ] [ LSTM ] [ Lyapunov Chaos ] [ Machine learning ] [ Machine Learning ] [ machine learning for code ] [ Machine Learning for Robotics ] [ Machine Learning (ML) for Programming Languages (PL)/Software Engineering (SE) ] [ machine learning systems ] [ Machine translation ] [ Machine Translation ] [ magnitude-based pruning ] [ Manifold clustering ] [ Manifolds ] [ Many-task ] [ mapping ] [ Markov chain Monte Carlo ] [ Markov Chain Monte Carlo ] [ Markov jump process ] [ Masked Reconstruction ] [ mathematical reasoning ] [ Matrix and Tensor Factorization ] [ matrix completion ] [ matrix decomposition ] [ Matrix Factorization ] [ max-margin ] [ MCMC ] [ MCMC sampling ] [ mean estimation ] [ mean-field dynamics ] [ mean separation ] [ Mechanism Design ] [ medical time series ] [ mel-filterbanks ] [ memorization ] [ Memorization ] [ Memory ] [ memory efficient ] [ memory efficient training ] [ Memory Mapping ] [ memory optimized training ] [ Memory-saving ] [ mesh ] [ Message Passing ] [ Message Passing GNNs ] [ meta-gradients ] [ Meta-learning ] [ Meta Learning ] [ Meta-Learning ] [ Metric Surrogate ] [ minimax optimal rate ] [ Minimax Optimization ] [ minimax risk ] [ Minmax ] [ min-max optimization ] [ mirror-prox ] [ Missing Data Inference ] [ Missing value imputation ] [ Missing Values ] [ misssing data ] [ mixed precision ] [ Mixed Precision ] [ Mixed-precision quantization ] [ mixture density nets ] [ mixture of experts ] [ mixup ] [ Mixup ] [ MixUp ] [ MLaaS ] [ MoCo ] [ Model Attribution ] [ model-based control ] [ model-based learning ] [ Model-based Reinforcement Learning ] [ Model-Based Reinforcement Learning ] [ model-based RL ] [ Model-based RL ] [ Model Biases ] [ Model compression ] [ model extraction ] [ model fairness ] [ Model Inversion ] [ model order reduction ] [ model ownership ] [ model predictive control ] [ model-predictive control ] [ Model Predictive Control ] [ Model privacy ] [ Models for code ] [ models of learning and generalization ] [ Model stealing ] [ Modern Hopfield Network ] [ modern Hopfield networks ] [ modified equation analysis ] [ modular architectures ] [ Modular network ] [ modular networks ] [ modular neural networks ] [ modular representations ] [ modulated convolution ] [ Molecular conformation generation ] [ molecular design ] [ Molecular Dynamics ] [ molecular graph generation ] [ Molecular Representation ] [ Molecule Design ] [ Momentum ] [ momentum methods ] [ momentum optimizer ] [ monotonicity ] [ Monte Carlo ] [ Monte-Carlo tree search ] [ Monte Carlo Tree Search ] [ morphology ] [ Morse theory ] [ mpc ] [ Multi-agent ] [ Multi-agent games ] [ Multiagent Learning ] [ multi-agent platform ] [ Multi-Agent Policy Gradients ] [ Multi-agent reinforcement learning ] [ Multi-agent Reinforcement Learning ] [ Multi-Agent Reinforcement Learning ] [ Multi-Agent Transfer Learning ] [ multiclass classification ] [ multi-dimensional discrete action spaces ] [ Multi-domain ] [ multi-domain disentanglement ] [ multi-head attention ] [ Multi-Hop ] [ multi-hop question answering ] [ Multi-hop Reasoning ] [ Multilingual Modeling ] [ multilingual representations ] [ multilingual transformer ] [ multilingual translation ] [ Multimodal ] [ Multi-Modal ] [ Multimodal Attention ] [ multi-modal learning ] [ Multimodal Learning ] [ Multi-Modal Learning ] [ Multimodal Spaces ] [ Multi-objective optimization ] [ multi-player ] [ Multiplicative Weights Update ] [ Multi-scale Representation ] [ multitask ] [ Multi-task ] [ Multi-task Learning ] [ Multi Task Learning ] [ Multi-Task Learning ] [ multi-task learning theory ] [ Multitask Reinforcement Learning ] [ Multi-view Learning ] [ Multi-View Learning ] [ Multi-view Representation Learning ] [ Mutual Information ] [ MuZero ] [ Named Entity Recognition ] [ NAS ] [ nash ] [ natural gradient descent ] [ Natural Language Processing ] [ natural scene statistics ] [ natural sparsity ] [ Negative Sampling ] [ negotiation ] [ nested optimization ] [ network architecture ] [ Network Architecture ] [ Network Inductive Bias ] [ network motif ] [ Network pruning ] [ Network Pruning ] [ networks ] [ network trainability ] [ network width ] [ Neural Architecture Search ] [ Neural Attention Distillation ] [ neural collapse ] [ Neural data compression ] [ Neural IR ] [ neural kernels ] [ neural link prediction ] [ Neural Model Explanation ] [ neural module network ] [ Neural Network ] [ Neural Network Bounding ] [ neural network calibration ] [ Neural Network Gaussian Process ] [ neural network robustness ] [ Neural networks ] [ Neural Networks ] [ neural network training ] [ Neural Network Verification ] [ neural ode ] [ Neural ODE ] [ Neural ODEs ] [ Neural operators ] [ Neural Physics Engines ] [ Neural Processes ] [ neural reconstruction ] [ neural sound synthesis ] [ neural spike train ] [ neural symbolic reasoning ] [ neural tangent kernel ] [ Neural tangent kernel ] [ Neural Tangent Kernel ] [ neural tangent kernels ] [ Neural text decoding ] [ neurobiology ] [ Neuroevolution ] [ Neuro symbolic ] [ Neuro-Symbolic Learning ] [ neuro-symbolic models ] [ NLI ] [ NLP ] [ Node Embeddings ] [ noise contrastive estimation ] [ Noise-contrastive learning ] [ Noise model ] [ noise robust learning ] [ Noisy Demonstrations ] [ noisy label ] [ Noisy Label ] [ Noisy Labels ] [ Non-asymptotic Confidence Intervals ] [ non-autoregressive generation ] [ nonconvex ] [ non-convex learning ] [ Non-Convex Optimization ] [ Non-IID ] [ nonlinear control theory ] [ nonlinear dynamical systems ] [ nonlinear Hawkes process ] [ nonlinear walk ] [ Non-Local Modules ] [ non-minimax optimization ] [ nonnegative PCA ] [ nonseparable Hailtonian system ] [ non-smooth models ] [ non-stationary stochastic processes ] [ no-regret learning ] [ normalized maximum likelihood ] [ normalize layer ] [ normalizers ] [ Normalizing Flow ] [ normalizing flows ] [ Normalizing flows ] [ Normalizing Flows ] [ normative models ] [ novelty-detection ] [ ntk ] [ number of linear regions ] [ numerical errors ] [ numerical linear algebra ] [ object-centric representations ] [ Object detection ] [ Object Detection ] [ object-keypoint representations ] [ ObjectNet ] [ Object Permanence ] [ Observational Imitation ] [ ODE ] [ offline ] [ offline/batch reinforcement learning ] [ off-line reinforcement learning ] [ offline reinforcement learning ] [ Offline Reinforcement Learning ] [ offline RL ] [ off-policy evaluation ] [ Off Policy Evaluation ] [ Off-policy policy evaluation ] [ Off-Policy Reinforcement Learning ] [ off-policy RL ] [ one-class-classification ] [ one-to-many mapping ] [ Open-domain ] [ open domain complex question answering ] [ open source ] [ Optimal Control Theory ] [ optimal convergence ] [ optimal power flow ] [ Optimal Transport ] [ optimal transport maps ] [ Optimisation for Deep Learning ] [ optimism ] [ Optimistic Gradient Descent Ascent ] [ Optimistic Mirror Decent ] [ Optimistic Multiplicative Weights Update ] [ Optimization ] [ order learning ] [ ordinary differential equation ] [ orthogonal ] [ orthogonal layers ] [ orthogonal machine learning ] [ Orthogonal Polynomials ] [ Oscillators ] [ outlier detection ] [ outlier-detection ] [ Outlier detection ] [ out-of-distribution ] [ Out-of-distribution detection in deep learning ] [ out-of-distribution generalization ] [ Out-of-domain ] [ over-fitting ] [ Overfitting ] [ overparameterisation ] [ over-parameterization ] [ Over-parameterization ] [ Overparameterization ] [ overparameterized neural networks ] [ Over-smoothing ] [ Oversmoothing ] [ over-squashing ] [ PAC Bayes ] [ padding ] [ parallel Monte Carlo Tree Search (MCTS) ] [ parallel tempering ] [ Parameter-Reduced MLR ] [ part-based ] [ Partial Amortization ] [ Partial differential equation ] [ partial differential equations ] [ partially observed environments ] [ particle inference ] [ pca ] [ pde ] [ pdes ] [ PDEs ] [ performer ] [ persistence diagrams ] [ personalized learning ] [ perturbation sets ] [ Peter-Weyl Theorem ] [ phase retrieval ] [ Physical parameter estimation ] [ physical reasoning ] [ physical scene understanding ] [ Physical Simulation ] [ physical symbol grounding ] [ physics ] [ physics-guided deep learning ] [ piecewise linear function ] [ pipeline toolkit ] [ plan-based reward shaping ] [ Planning ] [ Poincaré Ball Model ] [ Point cloud ] [ Point clouds ] [ point processes ] [ pointwise mutual information ] [ poisoning ] [ poisoning attack ] [ poisson matrix factorization ] [ policy learning ] [ Policy Optimization ] [ polynomial time ] [ Pose Estimation ] [ Position Embedding ] [ Position Encoding ] [ post-hoc calibration ] [ Post-Hoc Correction ] [ Post Training Quantization ] [ power grid management ] [ Predictive Modeling ] [ predictive uncertainty ] [ Predictive Uncertainty Estimation ] [ pretrained language model ] [ pretrained language model. ] [ pre-trained language model fine-tuning ] [ Pretrained Language Models ] [ Pretrained Text Encoders ] [ pre-training ] [ Pre-training ] [ Primitive Discovery ] [ principal components analysis ] [ Privacy ] [ privacy leakage from gradients ] [ privacy preserving machine learning ] [ Privacy-utility tradeoff ] [ probabelistic models ] [ probabilistic generative models ] [ probabilistic inference ] [ probabilistic matrix factorization ] [ Probabilistic Methods ] [ probabilistic multivariate forecasting ] [ probabilistic numerics ] [ probabilistic programs ] [ probably approximated correct guarantee ] [ Probe ] [ probing ] [ procedural generation ] [ procedural knowledge ] [ product of experts ] [ Product Quantization ] [ Program obfuscation ] [ Program Synthesis ] [ Proper Scoring Rules ] [ protein ] [ prototype propagation ] [ Provable Robustness ] [ provable sample efficiency ] [ proximal gradient descent-ascent ] [ proxy ] [ Pruning ] [ Pruning at initialization ] [ pseudo-labeling ] [ Pseudo-Labeling ] [ QA ] [ Q-learning ] [ Quantization ] [ quantum machine learning ] [ quantum mechanics ] [ Quantum Mechanics ] [ Question Answering ] [ random ] [ Random Feature ] [ Random Features ] [ Randomized Algorithms ] [ Random Matrix Theory ] [ Random Weights Neural Networks ] [ rank-collapse ] [ rank-constrained convex optimization ] [ rao ] [ rao-blackwell ] [ Rate-distortion optimization ] [ raven's progressive matrices ] [ real time recurrent learning ] [ real-world ] [ Real-world image denoising ] [ reasoning paths ] [ recommendation systems ] [ recommender system ] [ Recommender Systems ] [ recovery likelihood ] [ rectified linear unit ] [ Recurrent Generative Model ] [ Recurrent Neural Network ] [ Recurrent neural networks ] [ Recurrent Neural Networks ] [ recursive dense retrieval ] [ reformer ] [ regime agnostic methods ] [ Regression ] [ Regression without correspondence ] [ regret analysis ] [ regret minimization ] [ Regularization ] [ Regularization by denoising ] [ regularized markov decision processes ] [ Reinforcement ] [ Reinforcement learning ] [ Reinforcement Learning ] [ Reinforcement Learnings ] [ Reinforcement learning theory ] [ relabelling ] [ Relational regularized autoencoder ] [ Relation Extraction ] [ relaxed regularization ] [ relu network ] [ ReLU networks ] [ Rematerialization ] [ Render-and-Compare ] [ Reparameterization ] [ repetitions ] [ replica exchange ] [ representational learning ] [ representation analysis ] [ Representation learning ] [ Representation Learning ] [ representation learning for computer vision ] [ representation learning for robotics ] [ representation of dynamical systems ] [ Representation Theory ] [ reproducibility ] [ reproducible research ] [ Reproducing kernel Hilbert space ] [ resampling ] [ reset-free ] [ residual ] [ ResNets ] [ resource constrained ] [ Restricted Boltzmann Machines ] [ retraining ] [ Retrieval ] [ reverse accuracy ] [ reverse engineering ] [ reward learning ] [ reward randomization ] [ reward shaping ] [ reweighting ] [ Rich observation ] [ rich observations ] [ risk-averse ] [ Risk bound ] [ Risk Estimation ] [ risk sensitive ] [ rl ] [ RMSprop ] [ RNA-protein interaction prediction ] [ RNA structure ] [ RNA structure embedding ] [ RNN ] [ RNNs ] [ robotic manipulation ] [ robust ] [ robust control ] [ robust deep learning ] [ Robust Deep Learning ] [ robust learning ] [ Robust Learning ] [ Robust Machine Learning ] [ Robustness ] [ Robustness certificates ] [ Robust Overfitting ] [ ROC ] [ Role-Based Learning ] [ rooted graphs ] [ Rotation invariance ] [ rtrl ] [ Runtime Systems ] [ Saddle-point Optimization ] [ safe ] [ Safe exploration ] [ safe planning ] [ Saliency ] [ Saliency Guided Data Augmentation ] [ saliency maps ] [ SaliencyMix ] [ sample complexity separation ] [ Sample Efficiency ] [ sample information ] [ sample reweighting ] [ Sampling ] [ sampling algorithms ] [ Scalability ] [ Scale ] [ scale-invariant weights ] [ Scale of initialization ] [ scene decomposition ] [ scene generation ] [ Scene Understanding ] [ Science ] [ science of deep learning ] [ score-based generative models ] [ score matching ] [ score-matching ] [ SDE ] [ Second-order analysis ] [ second-order approximation ] [ second-order optimization ] [ Security ] [ segmented models ] [ selective classification ] [ Self-Imitation ] [ self supervised learning ] [ Self-supervised learning ] [ Self-supervised Learning ] [ Self Supervised Learning ] [ Self-Supervised Learning ] [ self-supervision ] [ self-training ] [ self-training theory ] [ semantic anomaly detection ] [ semantic directions in latent space ] [ semantic graphs ] [ Semantic Image Synthesis ] [ semantic parsing ] [ semantic role labeling ] [ semantic-segmentation ] [ Semantic Segmentation ] [ Semantic Textual Similarity ] [ semi-infinite duality ] [ semi-nonnegative matrix factorization ] [ semiparametric inference ] [ semi-supervised ] [ Semi-supervised Learning ] [ Semi-Supervised Learning ] [ semi-supervised learning theory ] [ Sentence Embeddings ] [ Sentence Representations ] [ Sentiment ] [ separation of variables ] [ Sequence Data ] [ Sequence Modeling ] [ sequence models ] [ Sequence-to-sequence learning ] [ sequence-to-sequence models ] [ sequential data ] [ Sequential probability ratio test ] [ Sequential Representation Learning ] [ set prediction ] [ set transformer ] [ SGD ] [ SGD noise ] [ sgld ] [ Shape ] [ shape bias ] [ Shape Bias ] [ Shape Encoding ] [ shapes ] [ Shapley values ] [ Sharpness Minimization ] [ side channel analysis ] [ Sigma Delta Quantization ] [ sign agnostic learning ] [ signal propagation ] [ signature ] [ sim2real ] [ sim2real transfer ] [ simple ] [ Singularity analysis ] [ singular value decomposition ] [ Sinkhorn algorithm ] [ skeleton-based action recognition ] [ sketch-based modeling ] [ sketches ] [ Skill Discovery ] [ SLAM ] [ sliced fused Gromov Wasserstein ] [ Sliced Wasserstein ] [ Slowdown attacks ] [ slowness ] [ Smooth games ] [ smoothing ] [ SMT Solvers ] [ social perception ] [ Soft Body ] [ soft labels ] [ software ] [ sound classification ] [ sound spatialization ] [ Source Code ] [ sparse Bayesian learning ] [ Sparse Embedding ] [ sparse embeddings ] [ sparse reconstruction ] [ sparse representation ] [ sparse representations ] [ sparse stochastic gates ] [ Sparsity ] [ Sparsity Learning ] [ spatial awareness ] [ spatial bias ] [ spatial uncertainty ] [ spatio-temporal forecasting ] [ spatio-temporal graph ] [ spatio-temporal modeling ] [ spatio-temporal modelling ] [ spatiotemporal prediction ] [ Spatiotemporal Understanding ] [ Spectral Analysis ] [ Spectral Distribution ] [ Spectral Graph Filter ] [ spectral regularization ] [ speech generation ] [ speech-impaired ] [ speech processing ] [ speech recognition. ] [ Speech Recognition ] [ spherical distributions ] [ spiking neural network ] [ spurious correlations ] [ square loss vs cross-entropy ] [ stability theory ] [ State abstraction ] [ state abstractions ] [ state-space models ] [ statistical learning theory ] [ Statistical Learning Theory ] [ statistical physics ] [ Statistical Physics ] [ statistical physics methods ] [ Steerable Kernel ] [ Stepsize optimization ] [ stochastic asymptotics ] [ stochastic control ] [ (stochastic) gradient descent ] [ Stochastic Gradient Descent ] [ stochastic gradient Langevin dynamics ] [ stochastic process ] [ Stochastic Processes ] [ stochastic subgradient method ] [ Storage Capacity ] [ straight-through ] [ straightthrough ] [ strategic behavior ] [ Streaming ASR ] [ structural biology ] [ structural credit assignment ] [ structural inductive bias ] [ Structured Pruning ] [ Structure learning ] [ structure prediction ] [ structures prediction ] [ Style Mixing ] [ Style Transfer ] [ subgraph reasoning. ] [ sublinear ] [ submodular optimization ] [ Subspace clustering ] [ Summarization ] [ summary statistics ] [ superpixel ] [ supervised contrastive learning ] [ Supervised Deep Networks ] [ Supervised Learning ] [ support estimation ] [ surprisal ] [ surrogate models ] [ svd ] [ SVD ] [ Symbolic Methods ] [ symbolic regression ] [ symbolic representations ] [ Symmetry ] [ symplectic networks ] [ Syntax ] [ Synthetic benchmark dataset ] [ synthetic-to-real generalization ] [ Systematic generalisation ] [ Systematicity ] [ System identification ] [ Tabular ] [ tabular data ] [ Tabular Data ] [ targeted attack ] [ Task Embeddings ] [ task generation ] [ task-oriented dialogue ] [ Task-oriented Dialogue System ] [ task reduction ] [ Task Segmentation ] [ Teacher-Student Learning ] [ teacher-student model ] [ temporal context ] [ Temporal knowledge graph ] [ temporal networks ] [ tensor product ] [ Text-based Games ] [ Text Representation ] [ Text Retrieval ] [ Text to speech ] [ Text to speech synthesis ] [ text-to-sql ] [ Texture ] [ Texture Bias ] [ Textworld ] [ Theorem proving ] [ theoretical issues in deep learning ] [ theoretical limits ] [ theoretical study ] [ Theory ] [ Theory of deep learning ] [ theory of mind ] [ Third-Person Imitation ] [ Thompson sampling ] [ time-frequency representations ] [ timescale ] [ timescales ] [ Time Series ] [ Time series forecasting ] [ time series prediction ] [ topic modelling ] [ Topology ] [ training dynamics ] [ Training Method ] [ trajectory ] [ trajectory optimization ] [ trajectory prediction ] [ Transferability ] [ Transfer learning ] [ Transfer Learning ] [ transformation invariance ] [ Transformer ] [ Transformers ] [ traveling salesperson problem ] [ Tree-structured Data ] [ trembl ] [ tropical function ] [ trust region ] [ two-layer neural network ] [ Uncertainty ] [ uncertainty calibration ] [ Uncertainty estimates ] [ Uncertainty estimation ] [ Uncertainty Machine Learning ] [ understanding ] [ understanding CNNs ] [ Understanding Data Augmentation ] [ understanding decision-making ] [ understanding deep learning ] [ Understanding Deep Learning ] [ understanding neural networks ] [ U-Net ] [ unidirectional ] [ uniprot ] [ universal approximation ] [ Universal approximation ] [ Universality ] [ universal representation learning ] [ universal sound separation ] [ unlabeled data ] [ Unlabeled Entity Problem ] [ Unlearnable Examples ] [ unrolled algorithms ] [ Unsupervised denoising ] [ Unsupervised Domain Translation ] [ unsupervised image denoising ] [ Unsupervised learning ] [ Unsupervised Learning ] [ unsupervised learning theory ] [ unsupervised loss ] [ Unsupervised Meta-learning ] [ unsupervised object discovery ] [ Unsupervised reinforcement learning ] [ unsupervised skill discovery ] [ unsupervised stabilization ] [ Upper Confidence bound applied to Trees (UCT) ] [ Usable Information ] [ VAE ] [ Value factorization ] [ value learning ] [ vanishing gradient problem ] [ variable binding ] [ variable convergence ] [ Variable Embeddings ] [ Variance Networks ] [ Variational Auto-encoder ] [ Variational autoencoders ] [ Variational Autoencoders ] [ Variational inference ] [ variational information bottleneck ] [ Verification ] [ video analysis ] [ Video Classification ] [ Video Compression ] [ video generation ] [ video-grounded dialogues ] [ Video prediction ] [ Video Reasoning ] [ video recognition ] [ Video Recognition ] [ video representation learning ] [ video synthesis ] [ video-text learning ] [ views ] [ virtual environment ] [ vision-and-language-navigation ] [ visual counting ] [ visualization ] [ visual perception ] [ Visual Reasoning ] [ visual reinforcement learning ] [ visual representation learning ] [ visual saliency ] [ vocoder ] [ voice conversion ] [ Volume Analysis ] [ VQA ] [ vulnerability of RL ] [ wanet ] [ warping functions ] [ Wasserstein ] [ wasserstein-2 barycenters ] [ wasserstein-2 distance ] [ Wasserstein distance ] [ waveform generation ] [ weakly-supervised learning ] [ weakly supervised representation learning ] [ Weak supervision ] [ Weak-supervision ] [ webly-supervised learning ] [ weight attack ] [ weight balance ] [ Weight quantization ] [ weight-sharing ] [ wide local minima ] [ Wigner-Eckart Theorem ] [ winning tickets ] [ wireframe model ] [ word-learning ] [ world models ] [ World Models ] [ worst-case generalisation ] [ xai ] [ XAI ] [ zero-order optimization ] [ zero-shot learning ] [ Zero-shot learning ] [ Zero-shot Learning ] [ Zero-shot synthesis ]

175 Results

Poster
Mon 1:00 Neural Approximate Sufficient Statistics for Implicit Models
Yanzhi Chen, Dinghuai Zhang, Michael U Gutmann, Aaron Courville, Zhanxing Zhu
Poster
Mon 1:00 Randomized Ensembled Double Q-Learning: Learning Fast Without a Model
Xinyue Chen, Che Wang, Zijian Zhou, Keith Ross
Poster
Mon 1:00 Predicting Infectiousness for Proactive Contact Tracing
Yoshua Bengio, Prateek Gupta, Tegan Maharaj, Nasim Rahaman, Martin Weiss, Tristan Deleu, Eilif B Muller, Meng Qu, victor schmidt, Pierre-luc St-charles, hannah alsdurf, Olexa Bilaniuk, david buckeridge, Gaétan Marceau Caron, pierre carrier, Joumana Ghosn, satya gagne, Chris J Pal, Irina Rish, Bernhard Schoelkopf, abhinav sharma, Jian Tang, Andrew Williams
Poster
Mon 1:00 Parameter-Based Value Functions
Francesco Faccio, Louis Kirsch, Jürgen Schmidhuber
Poster
Mon 9:00 Zero-Cost Proxies for Lightweight NAS
Mohamed Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, Nic Lane
Poster
Mon 9:00 Disentangling 3D Prototypical Networks for Few-Shot Concept Learning
Mihir Prabhudesai, Shamit Lal, Darshan Patil, Hsiao-Yu Tung, Adam Harley, Katerina Fragkiadaki
Poster
Mon 9:00 Vector-output ReLU Neural Network Problems are Copositive Programs: Convex Analysis of Two Layer Networks and Polynomial-time Algorithms
Arda Sahiner, Tolga Ergen, John M Pauly, Mert Pilanci
Poster
Mon 9:00 On the Impossibility of Global Convergence in Multi-Loss Optimization
Alistair Letcher
Poster
Mon 9:00 Learning-based Support Estimation in Sublinear Time
talyaa01 Eden, Piotr Indyk, Shyam Narayanan, Ronitt Rubinfeld, Sandeep Silwal, Tal Wagner
Poster
Mon 9:00 Unsupervised Meta-Learning through Latent-Space Interpolation in Generative Models
Siavash Khodadadeh, Sharare Zehtabian, Saeed Vahidian, Weijia Wang, Bill Lin, Ladislau Boloni
Poster
Mon 9:00 Intrinsic-Extrinsic Convolution and Pooling for Learning on 3D Protein Structures
Pedro Hermosilla Casajus, Marco Schäfer, Matej Lang, Gloria Fackelmann, Pere-Pau Vázquez, Barbora Kozlikova, Michael Krone, Tobias Ritschel, Timo Ropinski
Poster
Mon 9:00 Primal Wasserstein Imitation Learning
Robert Dadashi, Hussenot Hussenot-Desenonges, Matthieu Geist, Olivier Pietquin
Poster
Mon 9:00 Effective Distributed Learning with Random Features: Improved Bounds and Algorithms
Yong Liu, Jiankun Liu, Shuqiang Wang
Poster
Mon 9:00 Plan-Based Relaxed Reward Shaping for Goal-Directed Tasks
Ingmar Schubert, Oz Oguz, Marc Toussaint
Poster
Mon 9:00 On the role of planning in model-based deep reinforcement learning
Jessica Hamrick, Abram Friesen, Feryal Behbahani, Arthur Guez, Fabio Viola, Sims Witherspoon, Thomas Anthony, Lars Buesing, Petar Veličković, Theo Weber
Poster
Mon 9:00 Image Augmentation Is All You Need: Regularizing Deep Reinforcement Learning from Pixels
Denis Yarats, Ilya Kostrikov, Rob Fergus
Spotlight
Mon 11:45 Geometry-Aware Gradient Algorithms for Neural Architecture Search
Liam Li, Misha Khodak, Nina Balcan, Ameet Talwalkar
Spotlight
Mon 14:00 Predicting Infectiousness for Proactive Contact Tracing
Yoshua Bengio, Prateek Gupta, Tegan Maharaj, Nasim Rahaman, Martin Weiss, Tristan Deleu, Eilif B Muller, Meng Qu, victor schmidt, Pierre-luc St-charles, hannah alsdurf, Olexa Bilaniuk, david buckeridge, Gaétan Marceau Caron, pierre carrier, Joumana Ghosn, satya gagne, Chris J Pal, Irina Rish, Bernhard Schoelkopf, abhinav sharma, Jian Tang, Andrew Williams
Poster
Mon 17:00 Regularized Inverse Reinforcement Learning
Wonseok Jeon, Chen-Yang Su, Paul Barde, Thang Doan, Derek Nowrouzezahrai, Joelle Pineau
Poster
Mon 17:00 Optimal Regularization can Mitigate Double Descent
Preetum Nakkiran, Prayaag Venkat, Sham M Kakade, Tengyu Ma
Poster
Mon 17:00 Meta-Learning with Neural Tangent Kernels
Yufan Zhou, Zhenyi Wang, Jiayi Xian, Changyou Chen, Jinhui Xu
Poster
Mon 17:00 Offline Model-Based Optimization via Normalized Maximum Likelihood Estimation
Justin Fu, Sergey Levine
Poster
Mon 17:00 Rethinking Architecture Selection in Differentiable NAS
Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, Cho-Jui Hsieh
Poster
Mon 17:00 Variational Intrinsic Control Revisited
Taehwan Kwon
Poster
Mon 17:00 Learning A Minimax Optimizer: A Pilot Study
Jiayi Shen, Xiaohan Chen, Howard Heaton, Tianlong Chen, Jialin Liu, Wotao Yin, Zhangyang Wang
Poster
Mon 17:00 PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable Physics
Zhiao Huang, Yuanming Hu, Tao Du, Siyuan Zhou, Hao Su, Joshua B Tenenbaum, Chuang Gan
Poster
Mon 17:00 Why resampling outperforms reweighting for correcting sampling bias with stochastic gradients
Jing An, Lexing Ying, Yuhua Zhu
Poster
Mon 17:00 Optimizing Memory Placement using Evolutionary Graph Reinforcement Learning
Shauharda Khadka, Estelle Aflalo, Mattias Marder, Avrech Ben-David, Santiago Miret, Shie Mannor, Tamir Hazan, Hanlin Tang, Somdeb Majumdar
Poster
Mon 17:00 MONGOOSE: A Learnable LSH Framework for Efficient Neural Network Training
Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan L Li, Tri Dao, Zhao Song, Anshumali Shrivastava, Christopher Re
Poster
Mon 17:00 Remembering for the Right Reasons: Explanations Reduce Catastrophic Forgetting
Sayna Ebrahimi, Suzanne Petryk, Akash Gokul, William Gan, Joseph E Gonzalez, Marcus Rohrbach, trevor darrell
Poster
Mon 17:00 Regularization Matters in Policy Optimization - An Empirical Study on Continuous Control
Zhuang Liu, Xuanlin Li, Bingyi Kang, trevor darrell
Poster
Mon 17:00 Partitioned Learned Bloom Filters
Kapil Vaidya, Eric Knorr, Michael Mitzenmacher, Tim Kraska
Spotlight
Mon 20:58 HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark
Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You, Qixuan Yu, Yue Wang, Cong Hao, Yingyan Lin
Poster
Tue 1:00 BOIL: Towards Representation Change for Few-shot Learning
Jaehoon Oh, Hyungjun Yoo, ChangHwan Kim, Se-Young Yun
Poster
Tue 1:00 FedMix: Approximation of Mixup under Mean Augmented Federated Learning
Tehrim Yoon, Sumin Shin, Sung Ju Hwang, Eunho Yang
Poster
Tue 1:00 Neurally Augmented ALISTA
Freya Behrens, Jonathan Sauder, Peter Jung
Poster
Tue 1:00 Monte-Carlo Planning and Learning with Language Action Value Estimates
Youngsoo Jang, Seokin Seo, Jongmin Lee, Kee-Eung Kim
Poster
Tue 1:00 Conformation-Guided Molecular Representation with Hamiltonian Neural Networks
Ziyao Li, Shuwen Yang, Guojie Song, Lingsheng Cai
Poster
Tue 1:00 Sample-Efficient Automated Deep Reinforcement Learning
Jörg Franke, Gregor Koehler, André Biedenkapp, Frank Hutter
Spotlight
Tue 3:35 Expressive Power of Invariant and Equivariant Graph Neural Networks
Waïss Azizian, marc lelarge
Oral
Tue 4:23 Scalable Learning and MAP Inference for Nonsymmetric Determinantal Point Processes
Mike Gartrell, Insu Han, Elvis Dohmatob, Jennifer Gillenwater, Victor-Emmanuel Brunel
Poster
Tue 9:00 Single-Timescale Actor-Critic Provably Finds Globally Optimal Policy
Zuyue Fu, Zhuoran Yang, Zhaoran Wang
Poster
Tue 9:00 Sharper Generalization Bounds for Learning with Gradient-dominated Objective Functions
Yunwen Lei, Yiming Ying
Poster
Tue 9:00 Scalable Bayesian Inverse Reinforcement Learning
Alex Chan, Mihaela van der Schaar
Poster
Tue 9:00 Transient Non-stationarity and Generalisation in Deep Reinforcement Learning
Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, Shimon Whiteson
Poster
Tue 9:00 Iterative Empirical Game Solving via Single Policy Best Response
Max Smith, Thomas Anthony, Michael Wellman
Poster
Tue 9:00 Vulnerability-Aware Poisoning Mechanism for Online RL with Unknown Dynamics
Yanchao Sun, Da Huo, Furong Huang
Poster
Tue 9:00 Learning Value Functions in Deep Policy Gradients using Residual Variance
Yannis Flet-Berliac, reda ouhamma, odalric-ambrym maillard, philippe preux
Poster
Tue 9:00 Text Generation by Learning from Demonstrations
Richard Pang, He He
Poster
Tue 9:00 Global optimality of softmax policy gradient with single hidden layer neural networks in the mean-field regime
Andrea Agazzi, Jianfeng Lu
Poster
Tue 9:00 C-Learning: Horizon-Aware Cumulative Accessibility Estimation
Panteha Naderian, Gabriel Loaiza-Ganem, Harry Braviner, Anthony Caterini, Jesse C Cresswell, Tong Li, Animesh Garg
Spotlight
Tue 13:28 Learning-based Support Estimation in Sublinear Time
talyaa01 Eden, Piotr Indyk, Shyam Narayanan, Ronitt Rubinfeld, Sandeep Silwal, Tal Wagner
Poster
Tue 17:00 DOP: Off-Policy Multi-Agent Decomposed Policy Gradients
Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, Chongjie Zhang
Poster
Tue 17:00 RNNLogic: Learning Logic Rules for Reasoning on Knowledge Graphs
Meng Qu, Junkun Chen, Louis-Pascal A Xhonneux, Yoshua Bengio, Jian Tang
Poster
Tue 17:00 CompOFA – Compound Once-For-All Networks for Faster Multi-Platform Deployment
Manas Sahni, Shreya Varshini, Alind Khare, Alexey Tumanov
Poster
Tue 17:00 Concept Learners for Few-Shot Learning
Kaidi Cao, Maria Brbic, Jure Leskovec
Poster
Tue 17:00 Large Batch Simulation for Deep Reinforcement Learning
Brennan Shacklett, Erik Wijmans, Aleksei Petrenko, Manolis Savva, Dhruv Batra, Vladlen Koltun, Kayvon Fatahalian
Poster
Tue 17:00 Linear Mode Connectivity in Multitask and Continual Learning
Seyed Iman Mirzadeh, Mehrdad Farajtabar, Dilan Gorur, Razvan Pascanu, Hassan Ghasemzadeh
Poster
Tue 17:00 DDPNOpt: Differential Dynamic Programming Neural Optimizer
Guan-Horng Liu, Tianrong Chen, Evangelos Theodorou
Poster
Tue 17:00 Mirostat: A Neural Text Decoding Algorithm That Directly Controls Perplexity
Sourya Basu, Govardana Sachithanandam Ramachandran, Nitish Shirish Keskar, Lav R Varshney
Poster
Tue 17:00 Monotonic Kronecker-Factored Lattice
William Bakst, Nobuyuki Morioka, Erez Louidor
Poster
Tue 17:00 Generating Adversarial Computer Programs using Optimized Obfuscations
Shashank Srikant, Sijia Liu, Tamara Mitrovska, Shiyu Chang, Quanfu Fan, Gaoyuan Zhang, Una-May O'Reilly
Poster
Tue 17:00 The Importance of Pessimism in Fixed-Dataset Policy Optimization
Jacob Buckman, Carles Gelada, Marc G Bellemare
Poster
Tue 17:00 Deep Equals Shallow for ReLU Networks in Kernel Regimes
Alberto Bietti, Francis Bach
Poster
Tue 17:00 Fuzzy Tiling Activations: A Simple Approach to Learning Sparse Representations Online
Yangchen Pan, Kirby Banman, Martha White
Poster
Tue 17:00 RMSprop converges with proper hyper-parameter
Naichen Shi, Dawei Li, Mingyi Hong, Ruoyu Sun
Poster
Tue 17:00 Learning to Reach Goals via Iterated Supervised Learning
Dibya Ghosh, Abhishek Gupta, Ashwin D Reddy, Justin Fu, Coline M Devin, Ben Eysenbach, Sergey Levine
Poster
Tue 17:00 Viewmaker Networks: Learning Views for Unsupervised Representation Learning
Alex Tamkin, Mike Wu, Noah Goodman
Poster
Tue 17:00 DrNAS: Dirichlet Neural Architecture Search
Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, Cho-Jui Hsieh
Poster
Tue 17:00 Behavioral Cloning from Noisy Demonstrations
Fumihiro Sasaki, Ryota Yamashina
Poster
Tue 17:00 Why Are Convolutional Nets More Sample-Efficient than Fully-Connected Nets?
Zhiyuan Li, Yi Zhang, Sanjeev Arora
Spotlight
Tue 19:15 DDPNOpt: Differential Dynamic Programming Neural Optimizer
Guan-Horng Liu, Tianrong Chen, Evangelos Theodorou
Spotlight
Tue 20:20 Async-RED: A Provably Convergent Asynchronous Block Parallel Stochastic Method using Deep Denoising Priors
Yu Sun, Jiaming Liu, Yiran Sun, Brendt Wohlberg, Ulugbek Kamilov
Oral
Tue 21:18 MONGOOSE: A Learnable LSH Framework for Efficient Neural Network Training
Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan L Li, Tri Dao, Zhao Song, Anshumali Shrivastava, Christopher Re
Invited Talk
Wed 0:00 Perceiving the 3D World from Images and Video
Lourdes Agapito
Poster
Wed 1:00 Deployment-Efficient Reinforcement Learning via Model-Based Offline Optimization
Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, Shixiang Gu
Poster
Wed 1:00 Grounded Language Learning Fast and Slow
Felix Hill, Olivier Tieleman, Tamara von Glehn, Nathaniel Wong, Hamza Merzic, Stephen Clark
Poster
Wed 1:00 Expressive Power of Invariant and Equivariant Graph Neural Networks
Waïss Azizian, marc lelarge
Poster
Wed 1:00 FOCAL: Efficient Fully-Offline Meta-Reinforcement Learning via Distance Metric Learning and Behavior Regularization
Lanqing Li, Rui Yang, Dijun Luo
Poster
Wed 1:00 A Better Alternative to Error Feedback for Communication-Efficient Distributed Learning
Samuel Horváth, Peter Richtarik
Poster
Wed 1:00 Identifying Physical Law of Hamiltonian Systems via Meta-Learning
Seungjun Lee, Haesang Yang, Woojae Seong
Poster
Wed 1:00 Efficient Continual Learning with Modular Networks and Task-Driven Priors
Tom Veniat, Ludovic Denoyer, Marc'Aurelio Ranzato
Poster
Wed 1:00 New Bounds For Distributed Mean Estimation and Variance Reduction
Peter Davies, Vijaykrishna Gurunathan, Niusha Moshrefi, Saleh Ashkboos, Dan Alistarh
Poster
Wed 1:00 Removing Undesirable Feature Contributions Using Out-of-Distribution Data
Saehyung Lee, Changhwa Park, Hyungyu Lee, Jihun Yi, Jonghyun Lee, Sungroh Yoon
Poster
Wed 1:00 Discovering Diverse Multi-Agent Strategic Behavior via Reward Randomization
Zhenggang Tang, Chao Yu, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Du, Yu Wang, Yi Wu
Poster
Wed 1:00 Differentiable Segmentation of Sequences
Erik Scharwächter, Jonathan Lennartz, Emmanuel Müller
Poster
Wed 1:00 Robust Learning of Fixed-Structure Bayesian Networks in Nearly-Linear Time
Yu Cheng, Honghao Lin
Spotlight
Wed 5:35 Neural Approximate Sufficient Statistics for Implicit Models
Yanzhi Chen, Dinghuai Zhang, Michael U Gutmann, Aaron Courville, Zhanxing Zhu
Poster
Wed 9:00 Entropic gradient descent algorithms and wide flat minima
Fabrizio Pittorino, Carlo Lucibello, Christoph Feinauer, Gabriele Perugini, Carlo Baldassi, Elizaveta Demyanenko, Riccardo Zecchina
Poster
Wed 9:00 Graph Traversal with Tensor Functionals: A Meta-Algorithm for Scalable Learning
Elan Markowitz, Keshav Balasubramanian, Mehrnoosh Mirtaheri, Sami Abu-El-Haija, Bryan Perozzi, Greg Ver Steeg, Aram Galstyan
Poster
Wed 9:00 For self-supervised learning, Rationality implies generalization, provably
Yamini Bansal, Gal Kaplun, Boaz Barak
Poster
Wed 9:00 Geometry-Aware Gradient Algorithms for Neural Architecture Search
Liam Li, Misha Khodak, Nina Balcan, Ameet Talwalkar
Poster
Wed 9:00 Federated Learning via Posterior Averaging: A New Perspective and Practical Algorithms
Maruan Al-Shedivat, Jennifer Gillenwater, Eric P Xing, Afshin Rostamizadeh
Poster
Wed 9:00 RODE: Learning Roles to Decompose Multi-Agent Tasks
Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, Chongjie Zhang
Poster
Wed 9:00 Theoretical bounds on estimation error for meta-learning
James Lucas, Mengye Ren, Irene Raissa KAMENI KAMENI, Toniann Pitassi, Richard Zemel
Poster
Wed 9:00 Differentiable Trust Region Layers for Deep Reinforcement Learning
Fabian Otto, Philipp Becker, Vien A Ngo, Hanna Ziesche, Gerhard Neumann
Poster
Wed 9:00 NAS-Bench-ASR: Reproducible Neural Architecture Search for Speech Recognition
Abhinav Mehrotra, Alberto Gil Couto Pimentel Ramos, Sourav Bhattacharya, Łukasz Dudziak, Ravichander Vipperla, Thomas C Chau, Mohamed Abdelfattah, Samin Ishtiaq, Nic Lane
Poster
Wed 9:00 Average-case Acceleration for Bilinear Games and Normal Matrices
Carles Domingo i Enrich, Fabian Pedregosa, Damien Scieur
Poster
Wed 9:00 Benchmarks for Deep Off-Policy Evaluation
Justin Fu, Mohammad Norouzi, Ofir Nachum, George Tucker, ziyu wang, Alexander Novikov, Sherry Yang, Michael Zhang, Yutian Chen, Aviral Kumar, Cosmin Paduraru, Sergey Levine, Tom Paine
Poster
Wed 9:00 Chaos of Learning Beyond Zero-sum and Coordination via Game Decompositions
Yun Kuen Cheung, Yixin Tao
Oral
Wed 11:15 Learning to Reach Goals via Iterated Supervised Learning
Dibya Ghosh, Abhishek Gupta, Ashwin D Reddy, Justin Fu, Coline M Devin, Ben Eysenbach, Sergey Levine
Oral
Wed 11:45 Evolving Reinforcement Learning Algorithms
John Co-Reyes, Yingjie Miao, Daiyi Peng, Esteban Real, Quoc V Le, Sergey Levine, Honglak Lee, Aleksandra Faust
Spotlight
Wed 12:00 Image Augmentation Is All You Need: Regularizing Deep Reinforcement Learning from Pixels
Denis Yarats, Ilya Kostrikov, Rob Fergus
Spotlight
Wed 12:58 Grounded Language Learning Fast and Slow
Felix Hill, Olivier Tieleman, Tamara von Glehn, Nathaniel Wong, Hamza Merzic, Stephen Clark
Poster
Wed 17:00 Is Attention Better Than Matrix Decomposition?
Zhengyang Geng, Meng-Hao Guo, Hongxu Chen, Xia Li, Ke Wei, Zhouchen Lin
Poster
Wed 17:00 Mixed-Features Vectors and Subspace Splitting
Alejandro Pimentel-Alarcón, Daniel L Pimentel-Alarcón
Poster
Wed 17:00 Emergent Symbols through Binding in External Memory
Taylor Webb, Ishan Sinha, Jonathan Cohen
Poster
Wed 17:00 Filtered Inner Product Projection for Crosslingual Embedding Alignment
Vin Sachidananda, Ziyi Yang, Chenguang Zhu
Poster
Wed 17:00 Evolving Reinforcement Learning Algorithms
John Co-Reyes, Yingjie Miao, Daiyi Peng, Esteban Real, Quoc V Le, Sergey Levine, Honglak Lee, Aleksandra Faust
Poster
Wed 17:00 Control-Aware Representations for Model-based Reinforcement Learning
Brandon Cui, Yinlam Chow, Mohammad Ghavamzadeh
Poster
Wed 17:00 Efficient Reinforcement Learning in Factored MDPs with Application to Constrained RL
Xiaoyu Chen, Jiachen Hu, Lihong Li, Liwei Wang
Poster
Wed 17:00 In Search of Lost Domain Generalization
Ishaan Gulrajani, David Lopez-Paz
Poster
Wed 17:00 Learning and Evaluating Representations for Deep One-Class Classification
Kihyuk Sohn, Chun-Liang Li, Jinsung Yoon, Minho Jin, Tomas Pfister
Poster
Wed 17:00 Task-Agnostic Morphology Evolution
Donald Hejna III, Pieter Abbeel, Lerrel Pinto
Spotlight
Wed 19:25 Large Scale Image Completion via Co-Modulated Generative Adversarial Networks
Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong, Xiao Liang, Eric Chang, Yan Xu
Spotlight
Wed 19:35 Emergent Symbols through Binding in External Memory
Taylor Webb, Ishan Sinha, Jonathan Cohen
Spotlight
Wed 21:15 PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable Physics
Zhiao Huang, Yuanming Hu, Tao Du, Siyuan Zhou, Hao Su, Joshua B Tenenbaum, Chuang Gan
Spotlight
Wed 21:25 Regularization Matters in Policy Optimization - An Empirical Study on Continuous Control
Zhuang Liu, Xuanlin Li, Bingyi Kang, trevor darrell
Spotlight
Wed 21:35 Regularized Inverse Reinforcement Learning
Wonseok Jeon, Chen-Yang Su, Paul Barde, Thang Doan, Derek Nowrouzezahrai, Joelle Pineau
Spotlight
Wed 21:45 Behavioral Cloning from Noisy Demonstrations
Fumihiro Sasaki, Ryota Yamashina
Oral
Thu 0:00 Rethinking Architecture Selection in Differentiable NAS
Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, Cho-Jui Hsieh
Poster
Thu 1:00 Adversarially Guided Actor-Critic
Yannis Flet-Berliac, Johan Ferret, Olivier Pietquin, philippe preux, Matthieu Geist
Poster
Thu 1:00 Impact of Representation Learning in Linear Bandits
Jiaqi Yang, Wei Hu, Jason Lee, Simon Du
Poster
Thu 1:00 Genetic Soft Updates for Policy Evolution in Deep Reinforcement Learning
Enrico Marchesini, Davide Corsi, Alessandro Farinelli
Poster
Thu 1:00 Scalable Learning and MAP Inference for Nonsymmetric Determinantal Point Processes
Mike Gartrell, Insu Han, Elvis Dohmatob, Jennifer Gillenwater, Victor-Emmanuel Brunel
Poster
Thu 1:00 Adaptive Extra-Gradient Methods for Min-Max Optimization and Games
Kimon ANTONAKOPOULOS, E. Belmega, Panayotis Mertikopoulos
Poster
Thu 1:00 Sparse Quantized Spectral Clustering
Zhenyu Liao, Romain Couillet, Michael W Mahoney
Poster
Thu 1:00 Optimal Conversion of Conventional Artificial Neural Networks to Spiking Neural Networks
Shikuang Deng, Shi Gu
Poster
Thu 1:00 What Matters for On-Policy Deep Actor-Critic Methods? A Large-Scale Study
Marcin Andrychowicz, Anton Raichuk, Piotr Stanczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier, Hussenot Hussenot-Desenonges, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, Olivier Bachem
Poster
Thu 1:00 Emergent Road Rules In Multi-Agent Driving Environments
Avik Pal, Jonah Philion, Andrew Liao, Sanja Fidler
Oral
Thu 3:00 What Matters for On-Policy Deep Actor-Critic Methods? A Large-Scale Study
Marcin Andrychowicz, Anton Raichuk, Piotr Stanczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier, Hussenot Hussenot-Desenonges, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, Olivier Bachem
Spotlight
Thu 3:45 Iterative Empirical Game Solving via Single Policy Best Response
Max Smith, Thomas Anthony, Michael Wellman
Poster
Thu 9:00 Learning to live with Dale's principle: ANNs with separate excitatory and inhibitory units
Jonathan Cornford, Damjan Kalajdzievski, Marco Leite, Amélie Lamarquette, Dimitri Kullmann, Blake A Richards
Poster
Thu 9:00 Local Search Algorithms for Rank-Constrained Convex Optimization
Kyriakos Axiotis, Maxim Sviridenko
Poster
Thu 9:00 Correcting experience replay for multi-agent communication
Sanjeevan Ahilan, Peter Dayan
Oral
Thu 11:45 Why Are Convolutional Nets More Sample-Efficient than Fully-Connected Nets?
Zhiyuan Li, Yi Zhang, Sanjeev Arora
Spotlight
Thu 12:10 Correcting experience replay for multi-agent communication
Sanjeevan Ahilan, Peter Dayan
Poster
Thu 17:00 Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization
Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma
Poster
Thu 17:00 Linear Convergent Decentralized Optimization with Compression
Xiaorui Liu, Yao Li, Rongrong Wang, Jiliang Tang, Ming Yan
Poster
Thu 17:00 Neural Thompson Sampling
Weitong ZHANG, Dongruo Zhou, Lihong Li, Quanquan Gu
Poster
Thu 17:00 Large Scale Image Completion via Co-Modulated Generative Adversarial Networks
Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong, Xiao Liang, Eric Chang, Yan Xu
Poster
Thu 17:00 Theoretical Analysis of Self-Training with Deep Networks on Unlabeled Data
Colin Wei, Kendrick Shen, Yining Chen, Tengyu Ma
Poster
Thu 17:00 A Design Space Study for LISTA and Beyond
Tianjian Meng, Xiaohan Chen, Yifan Jiang, Zhangyang Wang
Poster
Thu 17:00 HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark
Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You, Qixuan Yu, Yue Wang, Cong Hao, Yingyan Lin
Poster
Thu 17:00 Neural Pruning via Growing Regularization
Huan Wang, Can Qin, Yulun Zhang, Yun Fu
Poster
Thu 17:00 Long-tailed Recognition by Routing Diverse Distribution-Aware Experts
Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu, Stella Yu
Poster
Thu 17:00 ANOCE: Analysis of Causal Effects with Multiple Mediators via Constrained Structural Learning
Hengrui Cai, Rui Song, Wenbin Lu
Poster
Thu 17:00 Async-RED: A Provably Convergent Asynchronous Block Parallel Stochastic Method using Deep Denoising Priors
Yu Sun, Jiaming Liu, Yiran Sun, Brendt Wohlberg, Ulugbek Kamilov
Oral
Thu 19:00 Theoretical Analysis of Self-Training with Deep Networks on Unlabeled Data
Colin Wei, Kendrick Shen, Yining Chen, Tengyu Ma
Spotlight
Thu 19:15 Long-tailed Recognition by Routing Diverse Distribution-Aware Experts
Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu, Stella Yu
Spotlight
Thu 19:55 RMSprop converges with proper hyper-parameter
Naichen Shi, Dawei Li, Mingyi Hong, Ruoyu Sun
Spotlight
Thu 20:35 Sparse Quantized Spectral Clustering
Zhenyu Liao, Romain Couillet, Michael W Mahoney
Workshop
Fri 3:30 Neural Compression: From Information Theory to Applications
Stephan Mandt, Robert Bamler, Yingzhen Li, Christopher Schroers, Yang Yang, Max Welling, Taco Cohen
Workshop
Fri 4:45 Oral 1: Yann Dubois et al., Lossy Compression for Lossless Prediction
Taco Cohen
Workshop
Fri 5:00 S2D-OLAD: From shallow to deep, overcoming limited and adverse data
Colin Bellinger, Roberto Corizzo, Vincent Dumoulin, Nathalie Japkowicz
Workshop
Fri 5:15 Beyond Static Papers: Rethinking How We Share Scientific Understanding in ML
Krishna Murthy Jatavallabhula, Bhairav Mehta, Tegan Maharaj, Amy Tabb, Khimya Khetarpal, Aditya Kusupati, Anna Rogers, Sara Hooker, Breandan Considine, Devi Parikh, Derek Nowrouzezahrai, Yoshua Bengio
Workshop
Fri 7:00 Workshop on Learning to Learn
Sarah Bechtle, Todor Davchev, Yevgen Chebotar, Timothy Hospedales, Franziska Meier
Workshop
Fri 7:00 Generalization beyond the training distribution in brains and machines
Christina Funke, Judith Borowski, Drew Linsley, Xavier Boix
Workshop
Fri 7:00 Interpretable Recommender System With Heterogeneous Information: A Geometric Deep Learning Perspective
Yan Leng
Workshop
Fri 7:55 ICLR 2021 Workshop on Embodied Multimodal Learning (EML)
Ruohan Gao, Andrew Owens, Dinesh Jayaraman, Yuke Zhu, Jiajun Wu, Kristen Grauman
Workshop
Fri 10:54 TenSEAL: A Library for Encrypted Tensor Operations Using Homomorphic Encryption
Ayoub Benaissa
Workshop
Fri 11:06 Smoothness Matrices Beat Smoothness Constants: Better Communication Compression Techniques for Distributed Optimization
Mher Safaryan, Filip Hanzely, Peter Richtarik
Workshop
Fri 11:16 Percy Liang - Self-training Algorithms and Analyses for Unsupervised Domain Adaptation
Percy Liang
Workshop
CoMPS: Continual Meta Policy Search
Glen Berseth, Zhiwei Zhang, Chelsea Finn, Sergey Levine
Workshop
Fast Inference and Transfer of Compositional Task Structure for Few-shot Task Generalization
Sungryull Sohn, Hyunjae Woo, Jongwook Choi, Izzeddin Gur, Aleksandra Faust, Honglak Lee
Workshop
SWIFT: Super-fast and Robust Privacy-Preserving Machine Learning
Nishat Koti, Mahak Pancholi, Arpita Patra, Ajith Suresh
Workshop
OptiDICE: Offline Policy Optimization via Stationary Distribution Correction Estimation
Jongmin Lee, Wonseok Jeon, Byung-Jun Lee, Joelle Pineau, Kee-Eung Kim
Workshop
COMBO: Conservative Offline Model-Based Policy Optimization
Tianhe (Kevin) Yu, Aviral Kumar, Aravind Rajeswaran, Rafael Rafailov, Sergey Levine, Chelsea Finn
Workshop
Reset-Free Reinforcement Learning via Multi-Task Learning: Learning Dexterous Manipulation Behaviors without Human Intervention
Abhishek Gupta, Justin Yu, Vikash Kumar, Tony Zhao, Kelvin Xu, Aaron Rovinsky, Thomas Devlin, Sergey Levine
Workshop
Federated Learning's Blessing: FedAvg has Linear Speedup
Zhaonan Qu, Kaixiang Lin, Zhaojian Li, Jiayu Zhou, Zhengyuan Zhou
Workshop
TenSEAL: A Library for Encrypted Tensor Operations Using Homomorphic Encryption
Ayoub Benaissa
Workshop
UNDERSTANDING CLIPPED FEDAVG: CONVERGENCE AND CLIENT-LEVEL DIFFERENTIAL PRIVACY
Xinwei Zhang, Xiangyi Chen, Jinfeng Yi, Steven Wu, Mingyi Hong
Workshop
Smoothness Matrices Beat Smoothness Constants: Better Communication Compression Techniques for Distributed Optimization
Mher Safaryan, Filip Hanzely, Peter Richtarik
Workshop
Does Differential Privacy Defeat Data Poisoning?
Matthew Jagielski, Alina Oprea
Workshop
FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks
Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Yu Rong, Junzhou Huang, Murali Annavaram, Salman Avestimehr