Abstract: A machine learning model that generalizes well should obtain low errors on unseen test examples. Thus, if we know how to optimally perturb training examples to account for test examples, we may achieve better generalization performance. However, obtaining such perturbation is not possible in standard machine learning frameworks as the distribution of the test data is unknown. To tackle this challenge, we propose a novel regularization method, meta-dropout, which learns to perturb the latent features of training examples for generalization in a meta-learning framework. Specifically, we meta-learn a noise generator which outputs a multiplicative noise distribution for latent features, to obtain low errors on the test instances in an input-dependent manner. Then, the learned noise generator can perturb the training examples of unseen tasks at the meta-test time for improved generalization. We validate our method on few-shot classification datasets, whose results show that it significantly improves the generalization performance of the base model, and largely outperforms existing regularization methods such as information bottleneck, manifold mixup, and information dropout.

Similar Papers

Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples
Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, Hugo Larochelle,
Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distribution Tasks
Hae Beom Lee, Hayeon Lee, Donghyun Na, Saehoon Kim, Minseop Park, Eunho Yang, Sung Ju Hwang,