ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut

Keywords: memory, nlp, representation learning, self supervised learning, transformer

Thursday: Natural Language

Abstract: Increasing model size when pretraining natural language representations often results in improved performance on downstream tasks. However, at some point further model increases become harder due to GPU/TPU memory limitations and longer training times. To address these problems, we present two parameter-reduction techniques to lower memory consumption and increase the training speed of BERT~\citep{devlin2018bert}. Comprehensive empirical evidence shows that our proposed methods lead to models that scale much better compared to the original BERT. We also use a self-supervised loss that focuses on modeling inter-sentence coherence, and show it consistently helps downstream tasks with multi-sentence inputs. As a result, our best model establishes new state-of-the-art results on the GLUE, RACE, and \squad benchmarks while having fewer parameters compared to BERT-large. The code and the pretrained models are available at

Similar Papers

Incorporating BERT into Neural Machine Translation
Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin, Wengang Zhou, Houqiang Li, Tieyan Liu,
StructBERT: Incorporating Language Structures into Pre-training for Deep Language Understanding
Wei Wang, Bin Bi, Ming Yan, Chen Wu, Jiangnan Xia, Zuyi Bao, Liwei Peng, Luo Si,
Pretrained Encyclopedia: Weakly Supervised Knowledge-Pretrained Language Model
Wenhan Xiong, Jingfei Du, William Yang Wang, Veselin Stoyanov,