Abstract: We introduce a deep recurrent neural network architecture that approximates visual cortical circuits (Mély et al., 2018). We show that this architecture, which we refer to as the 𝜸-net, learns to solve contour detection tasks with better sample efficiency than state-of-the-art feedforward networks, while also exhibiting a classic perceptual illusion, known as the orientation-tilt illusion. Correcting this illusion significantly reduces \gnetw contour detection accuracy by driving it to prefer low-level edges over high-level object boundary contours. Overall, our study suggests that the orientation-tilt illusion is a byproduct of neural circuits that help biological visual systems achieve robust and efficient contour detection, and that incorporating these circuits in artificial neural networks can improve computer vision.

Similar Papers

Disentangling neural mechanisms for perceptual grouping
Junkyung Kim, Drew Linsley, Kalpit Thakkar, Thomas Serre,
Rotation-invariant clustering of neuronal responses in primary visual cortex
Ivan Ustyuzhaninov, Santiago A. Cadena, Emmanouil Froudarakis, Paul G. Fahey, Edgar Y. Walker, Erick Cobos, Jacob Reimer, Fabian H. Sinz, Andreas S. Tolias, Matthias Bethge, Alexander S. Ecker,