DeepV2D: Video to Depth with Differentiable Structure from Motion

Zachary Teed, Jia Deng

Keywords:

Abstract: We propose DeepV2D, an end-to-end deep learning architecture for predicting depth from video. DeepV2D combines the representation ability of neural networks with the geometric principles governing image formation. We compose a collection of classical geometric algorithms, which are converted into trainable modules and combined into an end-to-end differentiable architecture. DeepV2D interleaves two stages: motion estimation and depth estimation. During inference, motion and depth estimation are alternated and converge to accurate depth.

Similar Papers

Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving
Yurong You, Yan Wang, Wei-Lun Chao, Divyansh Garg, Geoff Pleiss, Bharath Hariharan, Mark Campbell, Kilian Q. Weinberger,
Semantically-Guided Representation Learning for Self-Supervised Monocular Depth
Vitor Guizilini, Rui Hou, Jie Li, Rares Ambrus, Adrien Gaidon,