Robust And Interpretable Blind Image Denoising Via Bias-Free Convolutional Neural Networks

Sreyas Mohan, Zahra Kadkhodaie, Eero P. Simoncelli, Carlos Fernandez-Granda

Keywords: cnn, denoising, generalization, interpretability, overfitting, robustness

Abstract: We study the generalization properties of deep convolutional neural networks for image denoising in the presence of varying noise levels. We provide extensive empirical evidence that current state-of-the-art architectures systematically overfit to the noise levels in the training set, performing very poorly at new noise levels. We show that strong generalization can be achieved through a simple architectural modification: removing all additive constants. The resulting "bias-free" networks attain state-of-the-art performance over a broad range of noise levels, even when trained over a limited range. They are also locally linear, which enables direct analysis with linear-algebraic tools. We show that the denoising map can be visualized locally as a filter that adapts to both image structure and noise level. In addition, our analysis reveals that deep networks implicitly perform a projection onto an adaptively-selected low-dimensional subspace, with dimensionality inversely proportional to noise level, that captures features of natural images.

Similar Papers

SELF: Learning to Filter Noisy Labels with Self-Ensembling
Duc Tam Nguyen, Chaithanya Kumar Mummadi, Thi Phuong Nhung Ngo, Thi Hoai Phuong Nguyen, Laura Beggel, Thomas Brox,
Robust training with ensemble consensus
Jisoo Lee, Sae-Young Chung,