Abstract: We consider the task of answering complex multi-hop questions using a corpus as a virtual knowledge base (KB). In particular, we describe a neural module, DrKIT, that traverses textual data like a KB, softly following paths of relations between mentions of entities in the corpus. At each step the module uses a combination of sparse-matrix TFIDF indices and a maximum inner product search (MIPS) on a special index of contextual representations of the mentions. This module is differentiable, so the full system can be trained end-to-end using gradient based methods, starting from natural language inputs. We also describe a pretraining scheme for the contextual representation encoder by generating hard negative examples using existing knowledge bases. We show that DrKIT improves accuracy by 9 points on 3-hop questions in the MetaQA dataset, cutting the gap between text-based and KB-based state-of-the-art by 70%. On HotpotQA, DrKIT leads to a 10% improvement over a BERT-based re-ranking approach to retrieving the relevant passages required to answer a question. DrKIT is also very efficient, processing up to 10-100x more queries per second than existing multi-hop systems.

Similar Papers

Scalable Neural Methods for Reasoning With a Symbolic Knowledge Base
William W. Cohen, Haitian Sun, R. Alex Hofer, Matthew Siegler,
Learning to Retrieve Reasoning Paths over Wikipedia Graph for Question Answering
Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi, Richard Socher, Caiming Xiong,
Transformer-XH: Multi-Evidence Reasoning with eXtra Hop Attention
Chen Zhao, Chenyan Xiong, Corby Rosset, Xia Song, Paul Bennett, Saurabh Tiwary,