Prediction Poisoning: Towards Defenses Against DNN Model Stealing Attacks

Tribhuvanesh Orekondy, Bernt Schiele, Mario Fritz

Keywords: adversarial, adversarial machine learning

Abstract: High-performance Deep Neural Networks (DNNs) are increasingly deployed in many real-world applications e.g., cloud prediction APIs. Recent advances in model functionality stealing attacks via black-box access (i.e., inputs in, predictions out) threaten the business model of such applications, which require a lot of time, money, and effort to develop. Existing defenses take a passive role against stealing attacks, such as by truncating predicted information. We find such passive defenses ineffective against DNN stealing attacks. In this paper, we propose the first defense which actively perturbs predictions targeted at poisoning the training objective of the attacker. We find our defense effective across a wide range of challenging datasets and DNN model stealing attacks, and additionally outperforms existing defenses. Our defense is the first that can withstand highly accurate model stealing attacks for tens of thousands of queries, amplifying the attacker's error rate up to a factor of 85$\times$ with minimal impact on the utility for benign users.

Similar Papers

Certified Defenses for Adversarial Patches
Ping-yeh Chiang, Renkun Ni, Ahmed Abdelkader, Chen Zhu, Christoph Studor, Tom Goldstein,
Nesterov Accelerated Gradient and Scale Invariance for Adversarial Attacks
Jiadong Lin, Chuanbiao Song, Kun He, Liwei Wang, John E. Hopcroft,