Lazy-CFR: fast and near-optimal regret minimization for extensive games with imperfect information

Yichi Zhou, Tongzheng Ren, Jialian Li, Dong Yan, Jun Zhu

Keywords:

Abstract: Counterfactual regret minimization (CFR) methods are effective for solving two-player zero-sum extensive games with imperfect information with state-of-the-art results. However, the vanilla CFR has to traverse the whole game tree in each round, which is time-consuming in large-scale games. In this paper, we present Lazy-CFR, a CFR algorithm that adopts a lazy update strategy to avoid traversing the whole game tree in each round. We prove that the regret of Lazy-CFR is almost the same to the regret of the vanilla CFR and only needs to visit a small portion of the game tree. Thus, Lazy-CFR is provably faster than CFR. Empirical results consistently show that Lazy-CFR is significantly faster than the vanilla CFR.

Similar Papers

Double Neural Counterfactual Regret Minimization
Hui Li, Kailiang Hu, Shaohua Zhang, Yuan Qi, Le Song,
A Generalized Training Approach for Multiagent Learning
Paul Muller, Shayegan Omidshafiei, Mark Rowland, Karl Tuyls, Julien Perolat, Siqi Liu, Daniel Hennes, Luke Marris, Marc Lanctot, Edward Hughes, Zhe Wang, Guy Lever, Nicolas Heess, Thore Graepel, Remi Munos,
Model Based Reinforcement Learning for Atari
Łukasz Kaiser, Mohammad Babaeizadeh, Piotr Miłos, Błażej Osiński, Roy H Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin, Ryan Sepassi, George Tucker, Henryk Michalewski,