Abstract: Sample efficiency has been one of the major challenges for deep reinforcement learning. Non-parametric episodic control has been proposed to speed up parametric reinforcement learning by rapidly latching on previously successful policies. However, previous work on episodic reinforcement learning neglects the relationship between states and only stored the experiences as unrelated items. To improve sample efficiency of reinforcement learning, we propose a novel framework, called Episodic Reinforcement Learning with Associative Memory (ERLAM), which associates related experience trajectories to enable reasoning effective strategies. We build a graph on top of states in memory based on state transitions and develop a reverse-trajectory propagation strategy to allow rapid value propagation through the graph. We use the non-parametric associative memory as early guidance for a parametric reinforcement learning model. Results on navigation domain and Atari games show our framework achieves significantly higher sample efficiency than state-of-the-art episodic reinforcement learning models.

Similar Papers

IMPACT: Importance Weighted Asynchronous Architectures with Clipped Target Networks
Michael Luo, Jiahao Yao, Richard Liaw, Eric Liang, Ion Stoica,
AMRL: Aggregated Memory For Reinforcement Learning
Jacob Beck, Kamil Ciosek, Sam Devlin, Sebastian Tschiatschek, Cheng Zhang, Katja Hofmann,
Never Give Up: Learning Directed Exploration Strategies
Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, Charles Blundell,