Poster
Reformer: The Efficient Transformer
Nikita Kitaev · Anselm Levskaya · Lukasz Kaiser
Abstract:
Large Transformer models routinely achieve state-of-the-art results on
a number of tasks but training these models can be prohibitively costly,
especially on long sequences. We introduce two techniques to improve
the efficiency of Transformers. For one, we replace dot-product attention
by one that uses locality-sensitive hashing, changing its complexity
from O($L^2$) to O($L \log L$), where $L$ is the length of the sequence.
Furthermore, we use reversible residual layers instead of the standard
residuals, which allows storing activations only once in the training
process instead of N times, where N is the number of layers.
The resulting model, the Reformer, performs on par with Transformer models
while being much more memory-efficient and much faster on long sequences.
Chat is not available.