Poster
Universal Approximation with Certified Networks
Martin Vechev · Matthew Mirman · Maximilian Baader
Abstract:
Training neural networks to be certifiably robust is critical to ensure their safety against adversarial attacks. However, it is currently very difficult to train a neural network that is both accurate and certifiably robust. In this work we take a step towards addressing this challenge. We prove that for every continuous function $f$, there exists a network $n$ such that:
(i) $n$ approximates $f$ arbitrarily close, and (ii) simple interval bound propagation of a region $B$ through $n$ yields a result that is arbitrarily close to the optimal output of $f$ on $B$. Our result can be seen as a Universal Approximation Theorem for interval-certified ReLU networks. To the best of our knowledge, this is the first work to prove the existence of accurate, interval-certified networks.
Chat is not available.