Skip to yearly menu bar Skip to main content


Poster

A Generalized Training Approach for Multiagent Learning

Thore Graepel · Remi Munos · Zhe Wang · Daniel Hennes · Karl Tuyls · SIQI LIU · Shayegan Omidshafiei · Mark Rowland · Julien Perolet · Nicolas Heess · Luke Marris · Marc Lanctot · Edward Hughes · Guy Lever · Paul Muller


Abstract:

This paper investigates a population-based training regime based on game-theoretic principles called Policy-Spaced Response Oracles (PSRO). PSRO is general in the sense that it (1) encompasses well-known algorithms such as fictitious play and double oracle as special cases, and (2) in principle applies to general-sum, many-player games. Despite this, prior studies of PSRO have been focused on two-player zero-sum games, a regime where in Nash equilibria are tractably computable. In moving from two-player zero-sum games to more general settings, computation of Nash equilibria quickly becomes infeasible. Here, we extend the theoretical underpinnings of PSRO by considering an alternative solution concept, α-Rank, which is unique (thus faces no equilibrium selection issues, unlike Nash) and applies readily to general-sum, many-player settings. We establish convergence guarantees in several games classes, and identify links between Nash equilibria and α-Rank. We demonstrate the competitive performance of α-Rank-based PSRO against an exact Nash solver-based PSRO in 2-player Kuhn and Leduc Poker. We then go beyond the reach of prior PSRO applications by considering 3- to 5-player poker games, yielding instances where α-Rank achieves faster convergence than approximate Nash solvers, thus establishing it as a favorable general games solver. We also carry out an initial empirical validation in MuJoCo soccer, illustrating the feasibility of the proposed approach in another complex domain.

Chat is not available.