Poster

Meta Back-Translation

Hieu Pham · Xinyi Wang · Yiming Yang · Graham Neubig

Keywords: [ back translation ] [ machine translation ] [ meta learning ]

Abstract:

Back-translation is an effective strategy to improve the performance of Neural Machine Translation~(NMT) by generating pseudo-parallel data. However, several recent works have found that better translation quality in the pseudo-parallel data does not necessarily lead to a better final translation model, while lower-quality but diverse data often yields stronger results instead. In this paper we propose a new way to generate pseudo-parallel data for back-translation that directly optimizes the final model performance. Specifically, we propose a meta-learning framework where the back-translation model learns to match the forward-translation model's gradients on the development data with those on the pseudo-parallel data. In our evaluations in both the standard datasets WMT En-De'14 and WMT En-Fr'14, as well as a multilingual translation setting, our method leads to significant improvements over strong baselines.

Chat is not available.